Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (12): 2317-2326.doi: 10.3864/j.issn.0578-1752.2015.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Research on Variable Selection of Wheat Kernel Protein Content with Near-Infrared Spectroscopy

LI Shuan-ming1,2,3, GUO Yin-qiao1, WANG Ke-ru1,4, XIE Rui-zhi1, DAI Jian-guo2,3XIAO Chun-hua4, LI Jing4, LI Shao-kun1,4   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
    2College of Information Science and Technology, Shihezi University, Shihezi 832000, Xinjiang
    3Geospatial Information Engineering Research Center, Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang
    4Key Laboratory of Oasis Ecology Agriculture of Shihezi  University, Shihezi 832000, Xinjiang
  • Received:2014-09-30 Online:2015-06-16 Published:2015-06-16

Abstract: 【Objective】The objective of the study was to select the characteristic spectrum of the whole grain of wheat grain protein and set up an optimization model for the rapid and non-damage detection of protein content of the whole grain of wheat grain protein, so as to provide a basis for designing field portable wheat grain protein content determination of spectrometer.【Method】 The experiment was carried out in 2012 and 2013 with eight winter wheat varieties with obvious difference in protein content as materials. Six treatments including three nitrogen levels and two irrigation levels were designed, and rich sample types of 176 wheat grain spectral data was collected. The original reflection spectrum obtained by ASD FieldSpec Pro optical spectrum instrument were transformed as absorption spectra. Then, through the S-G smoothing, the multiplicative scatter correction and baseline correction processing, the spectra were used to create model with cross validation of partial least squares regression, uninformative variables elimination (UVE) method, successive projections algorithm (SPA), multiple linear regression (MLR) provision and stepwise multiple linear regression (SMLR) and their combination, respectively. 【Result】The results show that, the unconcerned information with wheat grain protein could be eliminated by uninformative variables elimination (UVE) method, the original spectrum wavelengths were compressed from 1621 to 717, which realized the first screening without getting rid of protein information. After that, different screening methods were used to correct the characteristics spectrum model. In this study, firstly, the grain protein content irrelevant information variables were removed by UVE. Then, using the SPA eliminated the effects of collinearity in the band spectrum matrix. Last, using SMLR contribution to the whole grain of wheat grain protein prediction model, the 15 big characteristic bands were screened out. The root mean square prediction error (RMSEP) and R2 are 0.5898 and 0.9410, respectively. 【Conclusion】To implement rapid determination of the whole grain of wheat grain protein under field conditions, the whole grain of wheat grain spectrum matrix can be effectively compressed using UVE, SPA and SMLR methods. The constructed forecasting model based on the screening protein content characteristic spectra can realize nondestructive and rapid determination of the whole grain of wheat grain protein content. The forecasting model is accuracy, reliable and cost effective, which lay a solid foundation for the design of field portable integrated wheat grain protein meter band selection and development.

Key words: characteristic spectrum, wheat, kernel protein, uninformative variables elimination, successive projections algorithm, model formation

[1]    李少昆, 谭海珍, 王克如, 肖春华, 谢瑞芝, 高世菊. 小麦籽粒蛋白质含量遥感监测研究进展. 农业工程学报, 2009, 25(2): 302-307.
Li S K, Tan H Z, Wang K R, Xiao C H, Xie R Z, Gao S J. Research progress in wheat grain protein content monitoring using remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(2): 302-307. (in Chinese)
[2]    刘玲玲, 赵博, 张小超. 谷物品质近红外光谱分析算法的研究. 农机化研究, 2012, 34(11): 14-19.
Liu L L, Zhao B, Zhang X C. NIR algorithm of grain quality detection. Journal of Agricultural Mechanization Research, 2012, 34(11): 14-19. (in Chinese)
[3]    王旭, 张凤清, 林家永, 范维燕, 叶华俊, 陈智锋. 便携式近红外谷物分析仪快速测定小麦蛋白质的研究. 粮食与饲料工业, 2012, 297(1): 13-17.
Wang X, Zhang F Q, Lin J Y, Fan W Y, Ye H J, Chen Z F. Study on the determination of protein content in wheat by portable near-infrared grain analvser. Cereal & Feed Industry, 2012, 297(1): 13-17. (in Chinese)
[4]    Singh C B, Jayas D S, Paliwal J, White N D G. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Computers and Electronics in Agriculture, 2010, 73(2): 118-125.
[5]    王欣, 谢锦春, 韩东海, 夏阿林, 韩熹, 陈英斌, 叶华俊, 王健. 水果内部品质在线近红外分析仪的研制. 现代科学仪器, 2009, 128(6): 11-13.
Wang X, Xie J C, Han D H, Xia A L, Han X, Chen Y B, Ye H J, Wang J. Development of near infrared spectroscopy on-line analyzer for fruit internal quality. Modern Scientific Instruments, 2009, 128(6): 11-13. (in Chinese)
[6]    韩东海. 无损检测技术在食品质量安全检测中的典型应用. 食品安全质量检测学报, 2012, 3(5): 400-413.
Han D H. Typical applications of non-destructive testing technology in food quality and safety detecting. Journal of Food Safety & Quality, 2012, 3(5): 400-413. (in Chinese)
[7]    王利, 孟庆翔, 任丽萍, 杨建松. 近红外光谱快速分析技术及其在动物饲料和产品品质检测中的应用. 光谱学与光谱分析, 2010, 30(6): 1482-1487.
Wang L, Meng Q X, Ren L P, Yang J S. Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products. Spectroscopy and Spectral Analysis, 2010, 30(6): 1482-1487. (in Chinese)
[8]    Centner V, Massart D L, de Noord O E, de Jong S, Vandeginste B M, Sterna C. Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 1996, 68(21): 3851-3858.
[9]    孙旭东, 郝勇, 蔡丽君, 刘燕德. 基于抽取和连续投影算法的可见近红外光谱变量筛选. 光谱学与光谱分析, 2011, 31(9): 2399-2402.
Sun X D, Hao Y, Cai L J, Liu Y D. Selection of visible-nir variables based on extraction and successive projections algorithm. Spectroscopy and Spectral Analysis, 2011, 31(9): 2399-2402. (in Chinese)
[10]   Li J B, Huang W Q, Chen L P, Fan S X, Zhang B H, Guo Z M, Zhao C J. Variable selection in visible and near-infrared spectral analysis for noninvasive determination of soluble solids content of ‘Ya’ pear. Food Analytical Methods, 2014, 7(9): 1891-1902.
[11]   Lu Y Z, Du C W, Yu C B, Zhou J M. Determination of the contents of magnesium and potassium in rapeseeds using FTIR-PAS combined with least squares support vector machines and uninformative variable elimination. Analytical Methods, 2014, 6(8): 2586-2591.
[12]   Dachoupakan-Sirisomboon C, Putthang R, Sirisomboon P. Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control, 2013, 33(1): 207-214.
[13]   赵春江, 黄文江, 王纪华, 杨敏华, 薛绪掌. 不同品种、肥水条件下冬小麦光谱红边参数研究. 中国农业科学, 2002, 35(8): 980-987.
Zhao C J, Huang W J, Wang J H, Yang M H, Xue X Z. Studies on the red edge parameters of spectrum in winter wheat under different varieties, fertilizer and water treatments. Scientia Agricultura Sinica, 2002, 35(8): 980-987. (in Chinese)
[14]   王纪华, 黄文江, 赵春江, 杨敏华, 王之杰. 利用光谱反射率估算叶片生化组分和籽粒品质指标研究. 遥感学报, 2003, 7(4): 277-284.
Wang J H, Huang W J, Zhao C J, Yang M H, Wang Z J. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Journal of Remote Sensing, 2003, 7(4): 277-284. (in Chinese)
[15]   黄文江, 王纪华, 刘良云, 赵春江, 宋晓宇, 马智宏. 冬小麦品质的影响因素及高光谱遥感监测方法. 遥感技术与应用, 2004, 19(3): 143-148.
Huang W J, Wang J H, Liu L Y, Zhao C J, Song X Y, Ma Z H. Study on grain quality effecting factors and monitoring methods by using hyperspectral data in winter wheat. Remote Sensing Technology and Application, 2004, 19(3): 143-148. (in Chinese)
[16]   王纪华, 李存军, 刘良云, 黄文江, 赵春江. 作物品质遥感监测预报研究进展. 中国农业科学, 2008, 41(9): 2633-2640.
Wang J H, Li C J, Liu L Y, Huang W J, Zhao C J. Progress of remote sensing monitoring and forecasting crop quality. Scientia Agricultura Sinica, 2008, 41(9): 2633-2640. (in Chinese)
[17]   李映雪, 朱艳, 田永超, 尤小涛, 周冬琴, 曹卫星. 小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系. 中国农业科学, 2005, 38(7): 1332-1338.
Li Y X, Zhu Y, Tian Y C, You X T, Zhou D Q, Cao W X. Relationship of grain protein content and relevant quality traits to canopy reflectance spectra in wheat. Scientia Agricultura Sinica, 2005, 38(7): 1332-1338. (in Chinese)
[18]   田永超, 朱艳, 曹卫星, 范雪梅, 刘小军. 利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累. 中国农业科学, 2004, 37(6): 808-813.
Tian Y C, Zhu Y, Cao W X, Fan X M, Liu X J. Monitoring protein and starch accumulation in wheat grains with leaf SPAD and canopy spectral reflectance. Scientia Agricultura Sinica, 2004, 37(6): 808-813. (in Chinese)
[19]   李卫国, 王纪华, 赵春江, 刘良云, 宋晓宇, 童庆禧. 基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型. 遥感学报, 2008, 12(3): 506-514.
Li W G, Wang J H, Zhao C J, Liu L Y, Song X Y, Tong Q X. A model for predicting protein content in winter wheat grain based on land-sat tm image and nitrogen accumulation. Journal of Remote Sensing, 2008, 12(3): 506-514. (in Chinese)
[20]   李振海, 徐新刚, 金秀良, 张竞成, 宋晓宇, 宋森楠, 杨贵军, 王纪华. 基于氮素运转原理和GRA-PLS算法的冬小麦籽粒蛋白质含量遥感预测. 中国农业科学, 2014, 47(19): 3780-3790.
Li Z H, Xu X G, Jin X L, Zhang J C, Song X Y, Song S N, Yang G J, Wang J H . Remote sensing prediction of winter wheat protein content based on nitrogen translocation and GRA-PLS method. Scientia Agricultura Sinica, 2014, 47(19): 3780-3790. (in Chinese)
[21]   宦克为, 郑峰, 刘小溪, 蔡小龙, 蔡红星, 王睿, 石晓光. 基于特征投影图的小麦近红外光谱变量选择方法研究. 光谱学与光谱分析, 2012, 32(11): 2962-2965.
Huan K W, Zheng F, Liu X X, Cai X L, Cai H X, Wang R, Shi X G. Research on variable selection of wheat near-infrared spectroscopy based on latent projective graph. Spectroscopy and Spectral Analysis, 2012, 32(11): 2962-2965. (in Chinese)
[22]   Rasooli-Sharabian V, Noguchi N, Ishi K. Significant wavelengths for prediction of winter wheat growth status and grain yield using multivariate analysis. Engineering in Agriculture, Environment and Food, 2014, 7(1): 14-21.
[23]   Mao X D, Sun L J, Hui G Y, Xu L L. Modeling research on wheat protein content measurement using near-infrared reflectance spectroscopy and optimized radial basis function neural network. Journal of Food and Drug Analysis, 2014, 22(2): 230-235.
[24]   GB/T 5511—2008 谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法.
GB/T 5511—2008 Cereals and pulses-determination of nitrogen content and calculation of the crude protein content-Kjeldahl method. (in Chinese)
[25]   褚小立. 化学计量学方法与分子光谱分析技术. 北京: 化学工业出版社, 2011.
Chu X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications. Beijing: Chemical Industry Press, 2011. (in Chinese)
[26]   Galvão R K H, Araujo M C U, José G E, Pontes M J C, Silva E C, Saldanha T C B. A method for calibration and validation subset partitioning. Talanta, 2005, 67(4): 736-740.
[27]   徐璐璐, 孙来军, 刘明亮, 毛晓东. 基于SPA-RBF神经网络的小麦蛋白质含量无损检测. 中国农学通报, 2013, 29(9): 208-212.
Xu L L, Sun L J, Liu M L, Mao X D. Non-destructive quality analysis of wheat protein based on SPA-RBF neural network. Chinese Agricultural Science Bulletin, 2013, 29(9): 208-212. (in Chinese)
[28]   张巧杰, 熊鸣, 祁鲲. 无信息变量消除法在糙米直链淀粉波长选择中的应用. 农机化研究, 2010, 32(11): 202-205.
Zhang Q J, Xiong M, Qi K. Region selecting methods of near infrared wavelength based on uninformative variables elimination. Journal of Agricultural Mechanization Research, 2010, 32(11): 202-205. (in Chinese)
[29]   Burns D A, Ciurczak E W. Handbook of Near-Infrared Analysis. 3rd ed. New York: CRC Press, Taylor & Francis Group, 2008: 355.
[30]   杰尔·沃克曼, 洛伊斯·文依, 褚小立, 许育鹏, 田高友, 译. 近红外光谱解析实用指南. 北京: 化学工业出版社, 2009: 274.
Workmqn J, Weyer L, Chu X L, Xu Y P, Tian G Y. Practical Guide to Interpretive Near-Infrared Spectroscopy. Beijing: Chemical Industry Press, 2009: 274. (in Chinese)
[31]   Araújo Mário César Ugulino, Saldanha Teresa Cristina Bezerra, Galvão Roberto Kawakami Harrop, Yoneyama Takashi, Chame Henrique Caldas, Visani Valeria. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65-73.
[32]   高洪智, 卢启鹏, 丁海泉, 彭忠琦. 基于连续投影算法的土壤总氮近红外特征波长的选取. 光谱学与光谱分析, 2009, 29(11): 2951-2954.
Gao H Z, Lu Q P, Ding H Q, Peng Z Q. Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm. Spectroscopy and Spectral Analysis, 2009, 29(11): 2951-2954. (in Chinese)
[33]   严衍禄, 陈斌, 朱大洲, 等. 近红外光谱分析的原理、技术与应用. 第一版. 北京: 中国轻工业出版社, 2013.
Yan Y L, Chen B, Zhu D Z. Near Infrared Spectroscopy-Principles, Technologies and Application. Beijing: China Light Industry Press, 2013. (in Chinese)
[34]   Cozzolino D, Delucchi I, Kholi M, Vázquez D. Use of near Infrared reflectance spectroscopy to evaluate quality characteristics in whole-wheat grain. Chilean Journal of Agricultural Research, 2006, 66(4): 370-375.
[35]   郑咏梅, 张军, 李荣福, 陈星旦, 申铉国, 张铁强. 小麦近红外特征波长提取及蛋白质含量测定. 激光与红外, 2003, 33(2): 125-127.
Zheng Y M, Zhang J, Li R F, Chen X D, Shen X G, Zhang T Q. Determination of protein content of wheat and wavelength selection of near-infrared spectral information. Laser & Infrared, 2003, 33(2): 125-127. (in Chinese)
[36]   Burns D A, Ciurczak E W. Courczak. Handbook of Near-Infrared Analysis. 3 ed. New York: CRC Press, Taylor & Francis Group, 2008: 363.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!