Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (5): 851-860.doi: 10.3864/j.issn.0578-1752.2015.05.03

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Characteristics and Functional Identification of Foxtail Millet Transcription Factor WRKY36

ZU Qian-li1,2, YIN Li-juan2, XU Zhao-shi2, CHEN Ming2, ZHOU Yong-bin1,2, LI Lian-cheng2, MA You-zhi2, MIN Dong-hong1, ZHANG Xiao-hong1   

  1. 1 Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas , Yangling 712100, Shaanxi
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crop, Ministry of Agriculture, Beijing 100081
  • Received:2014-09-19 Online:2015-03-01 Published:2015-03-01

Abstract: 【Objective】 Abiotic stresses seriously affect the plant growth development and the crop yield. WRKY transcription factors play a key role in the regulatory mechanism. This study provided experimental data for further study of the molecular characteristics and the function of SiWRKY36 gene. 【Method】 SiWRKY36 gene was isolated from the drought-treated foxtail millet transcriptome profile. Bioinformatics methods were used to analyze the molecular properties of the SiWRKY36 gene. Homologous sequences of SiWRKY36 were selected from the Phytozome program. Homologous analysis and multiple alignments were performed with MEGA 5. MEME and SMART online tools were used for protein sequence analysis. GSDS and PHYRE2 online tools were used to analyze gene structure and tertiary structure of SiWRKY36, respectively. Quantitative real-time PCR (qRT-PCR) was used to examine the expression pattern of SiWRKY36 gene in different abiotic stresses and phytohormone treatments. Full length SiWRKY36 cDNA was ligated into the vector to construct an expression vector for wild-type Arabidopsis plant. The pBI121-SiWRKY36 expression vector was introduced into Agrobacterium tumefaciens strain cells. Transgenic plants were used for resistance identification experiment. 【Result】 SiWRKY36 shared a high similarity with switchgrass and belonged to Group Ι of WRKY family including two WRKYGQK conserved domains. The predicted tertiary structure of SiWRKY36 contained two alpha helix and three beta folds. SiWRKY36 was mainly located in nucleus. The expression pattern showed that SiWRKY36 was involved in responses to various abiotic stresses and exogenous hormones, which was similar with the promoter analysis. The total root length, root surface area and root volume were slightly different between three SiWRKY36 lines and wild-type plants in drought treatment (2% PEG) in Arabidopsis plants. 【Conclusion】 SiWRKY36 transgenic plants have a certain resistance under mild drought conditions.

Key words: Foxtail millet, WRKY transcription factor, stress responses, subcellular localization, stress resistance

[1] Xu Z S, Chen M, Li L C, Ma Y Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86: 969-977. 
[2] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5: 199-206. 
[3] Rishmawi L, Pesch M, Juengst C, Schauss A C, Schrader A, Hülskamp M. Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis. Plant Physiology, 2014, 165: 186-195. 
[4] Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro A C, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè M E, Piffanelli P. Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology, 2009, 120: 1-22.
[5] Guo C, Guo R, Xu X, Gao M, Li X, Song J, Zheng Y, Wang X. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. Journal of Experimental Botany, 2014, 65: 1513-1528.
[6] Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012, 287: 495-513. 
[7] Zhang Y, Wang L. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005, 5: 1-12. 
[8] Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biology, 2012, 144: 1-18. 
[9] Chujo T, Miyamoto K, Ogawa S, Masuda Y, Shimizu T, Kishi-Kaboshi M, Takahashi A, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLoS One, 2014, 9: 1-14. 
[10] Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One, 2013, 8: 1-13. 
[11] Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 2011, 62: 3031-3037. 
[12] Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30: 549-554. 
[13] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30: 555-561. 
[14] Liu P, Xu Z S, Pan-Pan L, Hu D, Chen M, Li L C, Ma Y Z. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. Journal of Experimental Botany, 2013, 4: 2915-2927. 
[15] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, 4: 16-30. 
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis- elements of abiotic stress inducible promoters and associated transcription factors. Biotechnology Bulletin, 2011, 4: 16-30. (in Chinese)
 [16] Xu Z S, Chen M, Li L C, Ma Y Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 2011, 53: 570-585. 
[17] Wen F, Zhu H, Li P, Jiang M, Mao W, Ong C, Chu Z. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon. DNA Research, 2014, 21: 327-339. 
[18] Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S. Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. The Journal of Biological Chemistry, 2012, 287: 7683-7691. 
[19] Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, Feng Z, Li Y, Qiu D, He G, Yang G. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Reports, 2014: 1-13. 
[20] Yan H, Jia H, Chen X, Hao L, An H, Guo X. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signalling and the modulation of reactive oxygen species production. Plant & Cell Physiology, 2014: 1-44. 
[21] Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z, Wang N, Londo J P, Li S, Xin H. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology, 2014, 14: 103. 
[22] Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 gene. The EMBO Journal, 1996, 15: 5690-5700. 
[23] Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functinal abscisic acid signaling in aleurone cells. Plant Physiology, 2005, 137: 176-189. 
[24] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends in Plant Science, 2010, 15: 247-258. 
[25] Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro A C, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè M E, Piffanelli P. Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology, 2009, 9: 120. 
[26] Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biology, 2013, 110: 1-15. 
[27] 赵君, 丁林云, 郭旺珍, 张天真. 一个与抗黄萎病和耐干旱、盐胁迫相关的棉花受体类似蛋白激酶基因的克隆与功能鉴定//现代分子植物育种与粮食安全研讨会论文集. 南京: 江苏省遗传学会, 2011: 43-45. 
Zhao J, Ding L Y, Guo W Z, Zhang T Z. A related to verticillium wilt and resistance to drought, salt stress of cotton receptor like protein kinase gene cloning and function identification//Conference on Modern Molecular Plant Breeding and Food Security. Nanjing: Jiangsu Genetics Society, 2011: 43-45. (in Chinese)
[1] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[4] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[5] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[6] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[7] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[8] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[9] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[10] WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang,HAO YuJin. Analysis of Apple Ethylene Response Factor MdERF72 to Abiotic Stresses [J]. Scientia Agricultura Sinica, 2019, 52(23): 4374-4385.
[11] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[12] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[13] Yue CHEN,TianXingZi WANG,Shuo YANG,Tong ZHANG,JinJiao MA,GaoWei YAN,YuQing LIU,Yan ZHOU,JiaNan SHI,JinPing LAN,Jian WEI,ShiJuan DOU,LiJuan LIU,Ming YANG,LiYun LI,GuoZhen LIU. Expression Profiling and Functional Characterization of Rice Transcription Factor OsWRKY68 [J]. Scientia Agricultura Sinica, 2019, 52(12): 2021-2032.
[14] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[15] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!