Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3417-3429.doi: 10.3864/j.issn.0578-1752.2019.19.012

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi)

JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun()   

  1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095
  • Received:2019-04-18 Accepted:2019-07-25 Online:2019-10-01 Published:2019-10-11
  • Contact: ShenChun QU E-mail:qscnj@njau.edu.cn

Abstract:

【Objective】 In this study, the full-length sequence of gibberellin insensitive gene (GAI2) was obtained from the leaf of Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi), named as DkGAI2. The subcellular localization and expression characteristics of DkGAI2 gene were analyzed. Then DkGAI2 gene was transformed into plant tobacco, and the morphological and physiological indicators of the transgenic tobacco plants were determined. Our study would provide a theoretical basis for the future research of GAI gene.【Method】 The full-length sequence of DkGAI2 gene was cloned from Nantongxiaofangshi by RT-PCR, 3’ RACE and 5’ RACE using the labeled GAI2 gene as the original sequence of high-throughput transcriptome sequencing of Nantongxiaofangshi (Unpublished). Sequence characteristics were analyzed by bioinformatics. The expression characteristics of DkGAI2 gene in five different phenological stages of Dafangshi and Nantongxiaofangshi, and the expression level of DkGAI2 gene in different tissues of Nantongxiaofangshi was detected by real-time quantitative PCR (qRT-PCR). The transient expression vector pCAMBIA-GFP-1302-DkGAI2 was constructed and was transiently infected with tobacco to analyze the subcellular localization of DkGAI2 gene. DkGAI2 gene driven by the 35S promoter was constructed and delivered into plant tobacco by Agrobacterium-mediated transformation approach. Transgenic plants were identified by using GUS staining and RT-PCR. After transplanting, the plant height, internode length, leaf aspect ratio and the content of GA1 and GA4 in transgenic tobacco plants were measured at the first flowering stage.【Result】 1 827 bp of DkGAI2 was cloned from Nantongxiaofangshi, the nucleotide sequence of DkGAI2 gene shared 72%-80% in homology compared with kiwifruit (KF588651.1), light skin (MF149049.1), pear (KX078214.1), apple (FJ535245.1) and grape (MG738718.1). DkGAI2 gene containing DELLA and GRAS conserved special domain, belonging to DELLA protein gene family. DkGAI2 gene encoding a putative protein about 608 amino acids, the relative molecular mass of DkGAI2 gene was 66.5 KD, the theoretical isoelectric point was 5.54, and the instability coefficient iwas 50.41, without obvious hydrophobic region, without transmembrane domain and signal peptide. Phylogenetic analysis showed that the DkGAI2 gene had close relationship with grape. qRT-PCR result showed that the expression level of DkGAI2 gene in five different phenological stages of Nantongxiaofangshi was higher than that of Dafangshi. DkGAI2 gene showed tissue expression specificity in different tissues of Nantongxiaofangshi, which had the highest expression in old leaves, followed by young leaves and shoot tips, while it had the lowest expression in fruitlet. The green fluorescent signal of the pCAMBIA-GFP- 1302-DkGAI2 fusion protein was located in the nucleus, indicating that DkGAI2 gene localized in the nucleus. After GUS staining and RT-PCR detection, 5 transgenic tobacco lines of DkGAI2 gene were obtained. The GA1 content of transgenic tobacco leaves were increased, the GA4 content were decreased, the total content of GA1 and GA4 were decreased, and the transgenic tobacco plants showed plant dwarfing phenotypes with shortened internodes, reduced leaf aspect ratio, and delayed flowering.【Conclusion】 DkGAI2 gene had tissue expression specificity; DkGAI2 gene localized in the nucleus, the expression level of DkGAI2 gene in Nantongxiaofangshi was higher than that of Dafangshi at the five different phenological periods. It was speculated that DkGAI2 may cause plant dwarfing by reducing GA4 content.

Key words: Nantongxiaofangshi, DkGAI2, gene cloning, subcellular localization, tissue specific expression

Table 1

Primers used for molecular cloning, expression and functional analysis of DkGAI2"

引物名 Primer name 引物序列 Primer sequence (5′-3′) 用途 Usage
DkGAI2-F CACAGCTCGTCCAATCTCCA 中间片段扩增
Intermediate fragment amplification
DkGAI2-R CTTCATCTCCTTCACCGCCA
DkGAI2 3′ GSP-1 CTTCTCCGACCTCCTCCAA 3′端扩增
3′-end amplification
DkGAI2 3′ GSP-2 CTGGATGCGTCAATGCTGG
DkGAI2 5′ GSP-1 CTTTGGCACTGGAGGAGGTCATG 5′端扩增
5′-end amplification
DkGAI2 5′ GSP-2 GGTGCTGCGGAGGAAGTGGGTTG
DkGAI2-ORF-F ATGAAGCGCGACCGCCGCA ORF扩增
ORF amplification
DkGAI2-ORF-R TCACCTCTGGTGGGTCTGGA
DkGAI2-YG-F CGTCAATGCTGGATCTTC qRT-PCR
Quantitative RT-PCR
DkGAI2-YG-R CTTCACCGCCAATAACAC
NtTubulin-F AGATGTTCCGTCGTGTCAGTG 烟草内参基因
Reference gene in tobacco
NtTubulin-R TGCTTCCTCTTCATCCTCATATCC
Dkactin-F GCCATCATTAATTGGAATGGAAGC 柿内参基因
Reference gene in persimmon
Dkactin-R GTGCCACAACCTTGATCTTCA

Fig. 1

Alignment of amino acid sequences of DkGAI2 gene"

Fig. 2

Phylogenetic tree of DkGAI2"

Fig. 3

Expression analysis of DkGAI2 gene in different periods of Dafangshi and Nantongxiaofangshi"

Fig. 4

Expression of DkGAI2 in different tissues of Nantongxiaofangshi Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 5

Subcellular localization analysis of DkGAI2 gene"

Fig. 6

GUS staining (A), RT-PCR (B) amplification of transformation tobacco with DkGAI2 gene"

Table 2

Determination of physiological and morphological indexes of transgenic tobacco plants of DkGAI2 gene"

测定指标 Determination index 野生型 WT 株系2 L-2 株系3 L-3 株系11 L-11
GA1含量 GA1 content (ng?g-1) 1.22±0.05 1.75±0.05 1.5±0.05 1.65±0.05
GA4含量 GA4 content (ng?g-1) 4.66±0.05 1.6±0.05 1.15±0.05 1.2±0.05
GA1+GA4含量 GA1+GA4 content (ng?g-1) 5.88±0.05 3.35±0.05 2.65±0.05 2.85±0.05
叶绿素含量Chlorophyll content (mg?g-1) 0.78±0.05 1.18±0.05 1.12±0.05 1.3±0.05
株高 Plant height (cm) 31.5±0.05 7.7±0.05 10.2±0.05 9.1±0.05
节间长度 Internode length (cm) 17.5±0.05 4.5±0.05 7.2±0.05 6.5±0.05
叶片长宽比 Length/width ratio 2.6±0.05 1.7±0.05 2±0.05 1.4±0.05

Fig. 7

Determination of morphological indicators of transgenic tobacco plants"

[1] 戴文浩, 盛炳成, 章镇 . 南通小方柿矮生性状及生理生化特性的研究. 南京农业大学学报, 1999,22(2):24-27.
DAI W H, SHENG B C, ZHANG Z . Studies on the physiological and biochemical characteristics and dwarfness of ‘Nantongxiaofangshi’ persimmon tree. Journal of Nanjing Agricultural University, 1999,22(2):24-27. (in Chinese)
[2] SUN T P . Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 2010,154(2):567-570.
[3] HUSSAIN A, PENG J R . DELLA proteins and GA signalling in Arabidopsis. Journal of Plant Growth Regulation, 2003, 22(1):134-140.
[4] PENG J, CAROL P, RICHARDS D E, KING K E, COWLING R J, MURPHY G P, HARBERD N P . The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & development, 1997,11(23):3194-3205.
[5] PENG J, HARBERD N P . Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome- deficient mutants of Arabidopsis. Plant Physiology, 1997,113(4):1051-1058.
[6] DAI C, XUE H W . Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. The EMBO Journal, 2010,29(11):1916-1927.
[7] ACHARD P, VRIEZEN W H, VAN DER STRAETEN D, HARBERD N P . Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell, 2003,15(12):2816-2825.
[8] JASINSKI S, TATTERSALL A, PIAZZA P, HAY A, MARTINEZ- GARCIA J F, SCHMITZ G, THERES K, MCCORMICK S, TSIANTIS M . PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. The Plant Journal, 2008,56(4):603-612.
[9] LI W J, ZHANG J X, SUN H Y, WANG S M, CHEN K Q, LIU Y X, LI H, MA Y, ZHANG Z H . FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca. Planta, 2018,247(4):941-951.
[10] ZHAO B, LI H T, LI J J, WANG B, DAI C, WANG J, LIU K D . Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics, 2017,130(4):727-741.
[11] XU F, LI T, XU P B, LI L, DU S S, LIAN H L, YANG H Q . DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Letters, 2016,590(4):541-549.
[12] DJAKOVIC-PETROVIC T, WIT M D, VOESENEK L A C J, PIERIK R . DELLA protein function in growth responses to canopy signals. The Plant Journal, 2007,51(1):117-126.
[13] JIN Y, LIU H, LUO D X, YU N, DONG W T, WANG C, ZHANG X W, DAI H L, YANG J, WANG E T . DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016,7:12433.
[14] NIR I, SHOHAT H, PANIZEL I, OLSZEWSKI N, AHARONI A, WEISS D . The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, 2017,29(12):3186-3197.
[15] CHEN L G, XIANG S Y, CHEN Y L, LI D B, YU D Q . Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Molecular Plant, 2017,10(9):1174-1189.
[16] GOLLDACK D, LI C, MOHAN H, PROBST N . Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 2014,5:151.
[17] DE VLEESSCHAUWER D, SEIFI H S, FILIPE O, HAECK A, NGUYEN HUU S, DEMEESTERE K, HOFTE M . The DELLA protein SLR1 integrates and amplifies salicylic acid-and jasmonic acid-dependent innate immunity in rice. Plant physiology, 2016,170(3):1831-1847.
[18] SILVERSTONE A L, MAK P Y A, MARTINEZ E C, SUN T . The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics, 1997,146(3):1087-1099.
[19] PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J M, GALE M D, HARBERD N P . ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256-261.
[20] IKEDA A, UEGUCHI-TANAKA M, SONODA Y, KITANO H, KOSHIOKA M, FUTSUHARA Y, MATSUOKA M, YAMAGUCHI J . Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell, 2001,13(5):999-1010.
[21] CHANDLER P M, MARION-POLL A, ELLIS M, GUBLER F . Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiology, 2002,129(1):181-190.
[22] 张涵, 王学敏, 刘希强, 马琳, 温红雨, 王赞 . 紫花苜蓿MsGAI的克隆、表达及遗传转化. 中国农业科学, 2019,52(2):201-214.
doi: 10.3864/j.issn.0578-1752.2019.02.002
ZHANG H, WANG X M, LIU X Q, MA L, WEN H Y, WANG Z . Cloning expression analysis and transformation of MsGAI gene from Medicago sativa L. Scientia Agricultura Sinica, 2019,52(2):201-214. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.02.002
[23] 赵春丽, 王晓, 潘君飞, 彭丽云, 赖钟雄, 刘生财 . 苋菜AtGAI基因克隆及表达分析. 西北植物学报, 2019,39(2):199-209.
ZHAO C L, WANG X, PAN J F, PENG L Y, LAI Z X, LIU S C . Cloning and expression analysis of AtGAI gene in Amaranthus tricolor L. Acta Botanica Boreali-Occidentalia Sinica, 2019,39(2):199-209. (in Chinese)
[24] 梁美霞, 祝军, 戴洪义 . 柱型苹果 MdGAI 基因的克隆及表达分析. 园艺学报, 2011,38(10):1969-1975.
LIANG M X, ZHU J, DAI H Y . Cloning and expression analyzing of MdGAI gene of columnar apples. Acta Horticulturae Sinica, 2011,38(10):1969-1975. (in Chinese)
[25] 费元, 钟丹, 韩雪, 庞基良 . 大岩桐GAІ同源基因的克隆及功能研究. 杭州师范大学学报(自然科学版), 2014,13(5):509-516.
FEI Y, ZHONG D, HAN X, PANG J L . Cloning and functional analysis of GAI homologous genes in Sinningia speciosa. Journal of Hangzhou Normal University(Natural Sciences Edition ,2014, 13(5):509-516.(in Chinese)
[26] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Physiological And Biochemical Experimental Principles and Techniques. Beijing: Higher Education Press, 2000. ( in Chinese)
[27] 彭世清, 陈守才 . 在烟草中表达拟南芥GAI基因获得矮化的烟草植株. 农业生物技术学报, 2005,13(3):388-389.
PENG S Q, CHEN S C . Obtaining dwarf plants by expression of an Arabidopsis GAI gene in tobacco. Journal of Agricultural Biotechnology, 2005,13(3):388-389. (in Chinese)
[28] APPLEFORD N E J, EVANS D J, LENTON J R, GASKIN P, CROKER S J, DEVOS K M, PHILLIPS A L, HEDDEN P . Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 2006,223(3):568-582.
[29] JACOBSEN S E, OLSZEWAKI N E . Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. The Plant Cell, 1993,5(8):887-896.
[30] SUN T P . Gibberellin signal transduction. Current Opinion in Plant Biology, 2000,3(5):374-380.
[31] HIRSCH S, OLDROYD G E D . GRAS-domain transcription factors that regulate plant development. Plant Signaling & Behavior, 2009,4(8):698-700.
[32] 温玮 . 棉花DELLA蛋白的基因克隆与功能的初步鉴定[D]. 海口: 海南大学, 2010.
WEN W . Cloning and functional identification of DELLA protein in cotton[D]. aikou: Hainan Univeristy, 2010. ( in Chinese)
[33] 宋仙萍 . 大豆DELLA基因GmGAI2α参与赤霉素信号转导途径的功能分析[D]. 哈尔滨: 东北农业大学, 2013.
SONG X P . Functional analysis of soybean DELLA gene GmGAI2α involved in gibberellin signal transduction pathway[D]. Harbin: Northeast Agricultural University, 2013. ( in Chinese)
[34] 逯久幸 . 梅花休眠相关DELLA基因的克隆与功能分析[D]. 北京: 北京林业大学, 2015.
LU J X . Cloning and functional analysis of DELLA gene related to plum dormancy[D]. Beijing: Beijing Forestry University, 2015. ( in Chinese)
[35] 杨光, 曹雪, 房经贵, 宋长年, 王晨, 王西成 . ‘藤稔’葡萄VvGAI基因的克隆、亚细胞定位及时空表达分析. 园艺学报, 2011,38(10):1883-1892.
YANG G, CAO X, FANG J G, SONG C N, WANG C, WANG X C . Cloning, subcellular localization and spatiotemporal expression of a VvGAI gene from grapevine ‘Fujiminori’. Acta Horticulturae Sinica, 2011,38(10):1883-1892. (in Chinese)
[36] 张颜 . 黄瓜中GA信号转导因子CsGAIP和CsGAMYB1的克隆与功能分析[D]. 北京: 中国农业大学, 2014.
ZHANG Y . Cloning and functional analysis of GA signal transduction factors CsGAIP and CsGAMYB1 in cucumber[D]. Beijing: China Agricultural University, 2014. ( in Chinese)
[37] ZENTELLA R, ZHANG Z L, PARK M, THOMAS S G, ENDO A, MURASE K, FLEET C M, JIKUMARU Y, NAMBARA E, KAMIYA Y, SUN T . Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 2007,19(10):3037-3057.
[38] EMANUELSSON O, VON HEIJNE G . Prediction of organellar targeting signals. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2001,1541(1/2):114-119.
[39] UEGUCHI-TANAKA M, ASHIKARI M, NAKAJIMA M, ITOH H . GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005,437(7059):693.
[40] HEDDEN P, PHILLIPS A L . Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 2000,5(12):523-530.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[3] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[4] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[5] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[6] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[7] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[8] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[9] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[10] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[11] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[12] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[13] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[14] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[15] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!