Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (23): 4658-4667.doi: 10.3864/j.issn.0578-1752.2014.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Relationship Between Temperate Meadow Steppe Soil’s Biological Properties and Aboveground Vegetation Under Different Grazing Intensities

TAN Hong-yan, YAN Rui-rui, YAN Yu-chun, CHEN Bao-rui, XIN Xiao-ping   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2014-05-26 Revised:2014-10-06 Online:2014-12-01 Published:2014-12-01

Abstract: 【Objective】The number of the soil microorganisms and soil enzyme are sensitive indexes for soil quality and ecosystem functional changes, it’s an important biological indicator for evaluating soil ecosystem degradation under interference conditions. This study focused on relationship between soil’s biological properties and aboveground vegetation under different grazing intensities, which explained the soil and plant degradation process and mechanism under grazing, thus giving a theoretical basis for ecological restoration of degraded grassland.【Method】 Based on the cattle grazing control experiment carried out in the temperate meadow steppe in the Hulunbeir Grassland, the number of soil microorganisms and soil enzymes activity changes under four different grazing intensities (control area G0.00: 0.00 Au·hm-2, light grazing G0.23: 0.23 Au·hm-2, moderate grazing G0.46: 0.46 Au·hm-2 and heavy grazing G0.92: 0.92 Au·hm-2) were monitored, and the relationship between soil’s biological properties and aboveground vegetation indexes was analyzed. 【Result】The maximum number of ammonifying bacteria, oligotrophic azotobacter microorganisms, oligotrophic cellulolytic microorganisms appeared in the treatment of light grazing G0.23; the maximum number of aerobe azotobacter, oligotrophic azotobacter appeared in the treatment of moderate grazing G0.46. Except for catalase, the activities of alkaline phosphatase, urease and invertase decreased significantly as grazing intensity increased (P<0.05) . The tendency of vegetation coverage, biomass and vegetation diversity indexes obviously decreased with the increase of grazing gradient. The soil bacterial physiological functional groups (except Nitrifying bacteria) were positively correlated with the species richness of aboveground vegetation, vegetation coverage, community diversity indexes and biomass; the soil alkaline phosphatase and urease activities showed a significant positive correlation with vegetation coverage, community diversity indexes and biomass(P<0.05).【Conclusion】The temperate meadow steppe soil’s biological properties showed different degrees of change under different grazing intensities, soil enzyme activities represented the current state of soil ecological system better than the microorganism community, and it had a better correlation with aboveground vegetation indexes.

Key words: grazing, above-ground vegetation, soil bacterial physiological functional groups, soil enzyme

[1]    Branson F A, Miller R F. Effects of increased precipitation and grazing management on Northeastern Montana Rangelands. Journal of Range Management, 1981, 34(1): 3-10.
[2]    盛海彦, 曹广民, 李国荣, 周靖靖, 焦文月, 李吉鹏, 张平. 放牧干扰对祁连山高寒金露梅灌丛草甸群落的影响. 生态环境学报, 2009, 18(1): 235-241.
Sheng H Y, Cao G M, Li G R, Zhou J J, Jiao W Y, Li J P, Zhang P. Effect of grazing disturbance on plant community of alpine meadow dominated by Potentilla froticosa shrub on Qilian Mountian. Ecology and Environmental Sciences, 2009, 18(1): 235-241. (in Chinese)
[3]    王启兰, 曹广民, 王长庭. 放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响. 植物营养与肥料学报, 2007, 13(5): 856-864.
Wang Q L, Cao G M, Wang C T. The impact of grazing on the activities of soil enzymes and soil environmenttal factors in alpine Kobresia pygmaea meadow. Plant Nutntion and Fertilizer Science, 2007, 13(5): 856-864. (in Chinese)
[4]    张成霞, 南志标. 放牧对草地土壤理化特性影响的研究进展. 草业学报, 2010, 19(4): 204-211.
Zhang C X, Nan Z B. Research progress on effects of grazing on physical and chemical characteristics of grassland soil. Acta Prataculturae Sinica, 2010, 19(4): 204-211. (in Chinese)
[5]    何亚婷, 董云社, 齐玉春, 肖胜生, 刘欣超. 草地生态系统土壤微生物量及其影响因子研究进展. 地理科学进展, 2010, 29(11): 1350-1359.
He Y T, Dong Y S, Qi Y C, Xiao S S, Liu X C. Advances in research on soil microbial biomass of grassland ecosystems and its influencing factors. Progress in Geography, 2010, 29(11): 1350-1359. (in Chinese)
[6]    闫瑞瑞, 闫玉春, 辛晓平, 杨桂霞, 王旭, 张保辉. 不同放牧梯度下草甸草原土壤微生物和酶活性研究. 生态环境学报, 2011, 20(2): 259-265.
Yan R R, Yan Y C, Xin X P, Yang G X, Wang X, Zhang B H. Changes in microorganisms and enzyme antivities in soil under different grazing intensities in meadow steppe, Inner Mongolia. Ecology and Environmental Sciences, 2011, 20(2): 259-265. (in Chinese)
[7]    张成霞, 南志标. 不同放牧强度下陇东天然草地土壤微生物三大类群的动态特征. 草业科学, 2010, 27(11): 131-136.
Zhang C X, Nan Z B. Changeable characteristics of three soil microbial groups under different grazing intensities in Loess Plateau. Pratacultural Science, 2010, 27(11): 131-136. (in Chinese)
[8]    Bardgett R D, Hobbs P J, Frostegård Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264.
[9]    Wang K H, McSorleya R, Bohlenb P. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology and Biochemistry, 2006, 38(7): 1956-1965
[10]   Ingram L J, Stahl P D, Schuman G E, Buyer J S, Vance G F, Ganjegunte G K, Welker J M, Derner J D. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Biology and Biochemistry, 2008, 72(4): 939-948.
[11]   Moussa A S, Rensburg L A, Kellner K. Soil microbial biomass in semi-arid communal sandy rangelands in the Western Bophrima district, South Africa. Applied Ecology and Environmental Research, 2007, 5(1): 43-56.
[12]   谈嫣蓉, 杜国祯, 陈懂懂, 孙大帅, 张世虎, 王向涛. 放牧对青藏高原东缘高寒草甸土壤酶活性及土壤养分的影响. 兰州大学学报, 2012, 48(1): 86-91.
Tan Y R, Tu G Z, Chen D D, Sun D S, Zhang S H, Wang X T. Impact of grazing on the activities of soil enzymes and soil nutrient factors in an alpine meadow on the QingHai-Tibetan plateau. Journal of Lanzhou University, 2012, 48(1): 86-91. (in Chinese)
[13]   高雪峰, 韩国栋, 张功. 荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究. 草业科学, 2007, 24(2): 10-13.
Gao X F, Han G D, Zhang G. Study on dynamics of soil enzyme activity and nutrient of desert steppe under different grazing intensities. Pratacultural Science, 2007, 24(2): 10-13. (in Chinese)
[14]   董全民, 马玉寿, 李青云, 施建军, 王启基. 牦牛放牧强度对高寒草甸暖季草场植被的影响. 草业科学, 2004(2): 48-53.
Dong Q M, Ma Y T, Li Q Y, Shi J J, Wang Q J. Effects of yaks stocking pates on aboveground and belowground biomass in kobrecia parva alpine meadow. Pratacultural Science, 2004(2): 48-53. (in Chinese)
[15]   闫瑞瑞, 辛晓平, 张保辉, 闫玉春, 杨桂霞. 肉牛放牧梯度对呼伦贝尔草甸草原植物群落特征的影响. 中国草地学报, 2010(3): 62-67.
Yan R R, Xin X P, Zhang B H, Yan Y C, Yang G X. Influence of cattle grazing gradient on plant community characteristics in Hulunber meadow steppe. Chinese Journal of Grassland, 2010(3): 62-67. (in Chinese)
[16]   关松荫. 土壤酶及其研究方法. 北京: 中国农业出版社, 1986.
Guan S Y. Soil Enzymes and Research Methods. Beijing: China Agriculture Press, 1986. (in Chinese)
[17]   尚占环, 丁玲玲, 龙瑞军, 马玉寿. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 2007(1): 34-40.
Shang Z H, Ding L L, Long R J, Ma Y T. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan plateau. Pratacultural Science, 2007(1): 34-40. (in Chinese)
[18]   姚拓, 王刚, 张德罡, 龙瑞军. 天祝高寒草地植被、土壤及土壤微生物时间动态的比较. 生态学报, 2006(6): 1926-1932.
Yao T, Wang G, Zhang D G, Long R J. Temporal changes of grassland vegetation, soil and soil microbial population in the Tianzhu aipine region. Acta Ecology Sinica, 2006(6): 1926-1932. (in Chinese)
[19]   宋俊峰, 韩国栋, 张功. 放牧强度对草甸草原土壤微生物数量和微生物生物量的影响. 内蒙古师范大学学报:自然科学汉文版, 2008(2): 237-240.
Song J F, Han G D, Zhang G. The effects of grazing intensity on soil microorganisms and soil microbial biomass in meadow steppe. Journal of Inner Mongolia Normal University: Natural Science Edition, 2008(2): 237-240. (in Chinese)
[20]   Wang K H, Mcsorley R, Bohlen P, Gathumbi S M. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology and Biochemistry, 2006, 38(7): 1956-1965.
[21]   王国荣, 陈秀蓉, 张俊忠, 武春燕. 东祁连山高寒灌丛草地土壤微生物生理功能群的动态分布研究. 草业学报, 2011(2): 31-38.
Wang G R, Chen X R, Zhang J Z, Wu C Y. The effects of grazing intensity on soil microorganism and soil microbial biomass in meadow steppe. Pratacultural Science, 2011(2): 31-38. (in Chinese)
[22]   Singh S K, Rai J P N, Singh A. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve (NDBR), India during wet and dry seasons. Geoderma, 2011, 162(3/4): 296-302.
[23]   Caldwell B A. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 2005, 49(6): 637-644.
[24]   Wang Z, Yun X J, Wei Z J, Michael P S, Wang Y F, Yang X, Hou X Y. Responses of plant community and soil properties to inter-annual precipitation variability and grazing durations in a desert steppe in Inner Mongolia. Journal of Integrative Agriculture, 2014, 13(6): 1171-1182.
[25]   范春梅, 廖超英, 李培玉, 孙长忠, 许喜明. 放牧强度对林草地土壤物理性状的影响-以黄土高原丘陵沟壑区为例. 中国农业科学, 2006, 39(7): 1501-1506.
Fan C M, Liao C Y, Li P Y, Sun C Z, Xu X M. A study of the effects of different grazing intensities on soil physical properties of grassland and forest floor-for example hilly and gully regions on the Loess Plateau. Scientia Agricultura Sinica, 2006, 39(7): 1501-1506. (in Chinese)
[26]   向泽宇, 王长庭, 宋文彪, 四郎生根, 呷绒仁青, 达瓦泽仁, 扎西罗布. 草地生态系统土壤酶活性研究进展. 草业科学, 2011(10): 1801-1806.
Xiang Z Y, Wang C T, Song W B, Silangshenggen, Garongrenqing, Dawazeren, Zhaxiluobu. Advance on soil enzymatic in grassland ecosystem. Pratacultural Science, 2011(10): 1801-1806. (in Chinese)
[27]   Klumpp K, Fontaine S, Attard E, Roux X L, Gleixner G, Soussana J F. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology, 2009, 97: 876-885.
[28]   周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15(3): 306-311.
Zhou J, Lei T. Review and prospect on methodology and affecting factors of soil microbial diversity. Biodiversity Science, 2007, 15(3): 306-311. (in Chinese)
[29]   胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37(1): 170-176.
Hu Y L, Wang S L, Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37(1): 170-176. (in Chinese)
[30]   夏北成. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9(3): 296-300.
Xia B C. Effect of vegetation on structure on soil microbial community. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300. (in Chinese)
[31]   蒋靖, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34(8): 979-988.
Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988. (in Chinese)
[32]   王光华, 金剑, 徐美娜, 刘晓冰. 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 2006, 25(5): 550-556.
Wang G H, Jin J, Xu M N, Liu X B. Effect of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 2006, 25(5): 550-556. (in Chinese)
[33]   Zak D R, Holmes W E, White D C, Peacock A D, Tilman D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 2003, 84(8): 2042-2050.
[34]   Li Y J, Zhu Y, Zhan J N, Li G, Wang H, Lai H, Yang D L. Effects of rest grazing on organic carbon storage in Stipa grandis steppe in Inner Mongolia, China. Journal of Integrative Agriculture, 2014, 13(3): 624-634.
[1] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[2] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[3] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[4] GUO FengHui,DING Yong,JI Lei,LI XianSong,LI XiLiang,HOU XiangYang. The Response of Leymus chinensis Cloned Offspring to Mowing [J]. Scientia Agricultura Sinica, 2022, 55(11): 2257-2264.
[5] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[6] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[7] YAN RuiRui, GAO Wa, SHEN BeiBei, ZHANG Yu, WANG Miao, ZHU XiaoYu, XIN XiaoPing. Index System for Quantitative Evaluation of Pasture Degradation in Meadow Grassland of Inner Mongolia [J]. Scientia Agricultura Sinica, 2021, 54(15): 3343-3354.
[8] FengJun ZHENG,Xue WANG,Jing LI,BiSheng WANG,XiaoJun SONG,MengNi ZHANG,XuePing WU,Shuang LIU,JiLong XI,JianCheng ZHANG,YongShan LI. Effect of No-Tillage with Manure on Soil Enzyme Activities and Soil Active Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1202-1213.
[9] ZHANG Yu, HOU LuLu, YAN RuiRui, XIN XiaoPing. Effects of Grazing Intensity on Plant Community Characteristics and Nutrient Quality of Herbage in a Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2550-2561.
[10] HOU LuLu,YAN RuiRui,ZHANG Yu,XIN XiaoPing. Effects of Grazing Intensity on Functional Traits of Leymus chinensis in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2562-2572.
[11] LIU XinChao,WANG LuLu,WU RuQun,XIN XiaoPing,SUN HaiLian,JIANG MingHong,LI XiaoShuang,WANG Miao,LIU Yun,SHAO ChangLiang. LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration [J]. Scientia Agricultura Sinica, 2020, 53(13): 2703-2714.
[12] SHI Ke, DONG ShiGang, SHEN FengMin, LONG Qian, JIANG GuiYing, LIU Fang, LIU ShiLiang. Effects of Wheat Seeding Rate with Nitrogen Fertilizer Application Reduction on Soil Microbial Biomass Carbon, Nitrogen and Enzyme Activities in Fluvo-Aquic Soil in Huang-Huai Plain [J]. Scientia Agricultura Sinica, 2019, 52(15): 2646-2663.
[13] ZHOU JingJing, MA HongBin, ZHOU Yao, WANG Li, NIU JiaWei, SHEN Yan, XU DongMei. Effects of Different Rotational Grazing Ways on Grazing Characteristics, Weight and Reproductive Performance of Tan Sheep in Desert Steppe [J]. Scientia Agricultura Sinica, 2017, 50(8): 1525-1534.
[14] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[15] YU ShuTing, ZHAO YaLi, WANG YuHong, LIU WeiLing, MENG ZhanYing, MU XinYuan, CHENG SiXian, LI ChaoHai. Improvement Effects of Rotational Tillage Patterns on Soil in the Winter Wheat-Summer Maize Double Cropping Area of Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2017, 50(11): 2150-2165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!