Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2703-2714.doi: 10.3864/j.issn.0578-1752.2020.13.018

• ECOLOGICAL INDUSTRY PRACTICE AND REGIONAL SCALE PROCESSES • Previous Articles     Next Articles

LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration

LIU XinChao1,2,3,WANG LuLu1,4,WU RuQun1,5,XIN XiaoPing1,SUN HaiLian2,3,JIANG MingHong6,LI XiaoShuang7,WANG Miao1,4,LIU Yun4,SHAO ChangLiang1()   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China;
    3Inner Mongolia Prataculture Research Center, Chinese Academy of Sciences, Hohhot 010031, China
    4School of Biology, Resources and Environment, Beijing Agricultural College, Beijing 102206, China
    5Center for Global Change and Earth Observations, Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA
    6College of Primary Education, Hulunber University, Hulunber 021008, Inner Mongolia, China
    7Inner Mongolia Hohhot Jingu Agricultural Commercial Bank Co., Ltd, Hohhot 010050, China
  • Received:2019-09-16 Accepted:2020-02-19 Online:2020-07-01 Published:2020-07-16
  • Contact: ChangLiang SHAO E-mail:shaochangliang@caas.cn

Abstract:

【Objective】 This study evaluated the comprehensive environmental effect of the process of intensive cow breeding-livestock manure utilization-natural grassland improvement. 【Method】 At first, the life cycle inventory of the milk produced under different dairy cattle cultivation modes was established. Then the comprehensive environment effects (greenhouse gas emissions, land occupation, water consumption and non-renewable energy consumption) and overall economic benefits in the whole life cycle of milk production were quantitatively analyzed by combining the experimental data of intensive cow breeding, manure utilization (including microbial fermentation organic fertilizer, earthworm breeding organic fertilizer, and mushroom breeding) and natural grassland improvement with the input data of local animal production and management. The function unit was 1 ton of standard milk (FPCM) in this analysis. 【Result】 The results showed that the mean gross income of local herdsmen’s grazing farms and intensive dairy farms was 8 900 yuan and 211 yuan per adult cow, respectively. If the operating cost was deducted, the net income of each adult cow in the two modes was 4 200 yuan (herdsmen’s grazing farm) and 4 100 yuan (intensive farm), respectively. The environmental impact caused by the production of 1 ton FPCM in intensive farm was 1.19 hm2 of grassland, 0.15 hm2 of arable land, 216.47 t of water, 1 944.19 MJ of fossil fuel and 0.73 t of CO2eq of greenhouse gas. In addition to the grassland area (3.25 hm2), the environmental impact of milk production by herdsmen’s grazing farms were less than that of intensive dairy farms (0.04 hm2 of cultivated land, 70.70 t of water, 892.80 MJ of fossil fuel and 0.55 t of CO2eq greenhouse gas). Natural clipped grassland improvement could significantly increase the hay yield per hectare grassland (increased for 68.57%) and income (increased for 10.71%), it could reduce the grassland area occupied by 40.50%, but the increase of fertilization and fuel consumption in the improvement would cause environmental problems (such as more greenhouse gas emissions 17.70 times) and more fuel consumption (2.10 times). In terms of the application of livestock manure treatment and utilization technology, the cattle manure produced by intensive farms was treated and utilized through microbial fermentation, earthworm treatment and mushroom cultivation, the net income generated was equivalent to about 5%-12% of the net income generated by milk production, and the overall environmental impact was relatively small. 【Conclusion】 Intensive farms had obvious advantages in improving grassland utilization efficiency, and had great potential in improving feed energy conversion efficiency, as well as milk yield and quality. However, intensive dairy farming would increase the planting area of alfalfa, oats and other high protein forages, and cause adverse environmental effects such as more greenhouse gas emissions, more water and energy consumption. In addition, the technology of natural grassland improvement and livestock manure treatment and utilization had great application potential in Hulunber animal husbandry.

Key words: life cycle assessment, intensive farming, seasonal grazing, environmental impact

Fig. 1

LCA analysis system boundary"

Table 1

Comparison of input and output of dairy cattle breeding between intensive and herdsman family farm"

经营模式 Cultivation mode 集约化养殖 Intensive culture 牧户散养 Herdsman’s free range
样本数量
Sample size
单位
Unit
1 7
均值Mean 最大值Max 最小值Min
成年母牛Cow 头Head 880 14.00 20 8
牛犊Calf 头Head 615 10.29 16 4
育成牛Finishing cow 头Head 360 9.83 23 2
合计Total 头Head 1855 32.71 56 18
干草Hay t 3247.50 30.86 50 6.25
精饲料Concentrated feed t 1675.50 8.29 21.00 3.00
苜蓿Alfalfa t 851.90 - - -
燕麦Oats t 1245.10 - - -
青储玉米Silage corn t 6811.75 - - -
牲畜粪便排放Livestock manure t 2523.70 40.29 69.64 16.06
牧场耗水量Water consumption t 29017.50 265.67 447.13 109.50
柴油消耗Diesel consumption l 60000.00 371.43 800.00 0
耗电量Power consumption kW?h 500000.00 2171.43 2800.00 1600.00
出售牲畜Livestock sold 头Head 535 8.57 18 4
出售牛奶Milk sold t 4471.25 27.94 47.02 3.20
出售牲畜收益Income from livestock 万元10000 CNY 255.90 6.51 19.80 1.40
出售牛奶收益 Income from milk 万元10000 CNY 1596.88 5.95 14.00 0.43

Table 2

Greenhouse gas emissions of dairy cattle"

JY1) SY2) JY+SY
肠道甲烷
Ruminant methane emission
(kg CH4/head/year)
肠道甲烷
Ruminant methane emission
(kg CH4/head/year)
粪便甲烷
Methane emission
from manure (kg CH4/head/year)
泌乳奶牛Lactating cow 115.00 61.00 9.00
非泌乳奶牛Non lactating cow 53.00 47.00 1.00
牛犊Calf 11.70 10.40 1.00
育肥牛Finishing cow
40.56 36.15 1.00

Table 3

Economic benefits per cow and environmental costs per 1 ton FPCM"

SY JY
均值
Mean
最大值
Max
最小值
Min
经济效益(万元)
Economic performance (10000 CNY)
毛收益Gross revenue 0.89 1.27 0.81 2.11
总投入Inputs 0.47 0.49 0.44 1.70
净收益Net profit 0.42 0.80 -0.34 0.41
草场占用面积(公顷)
Grassland occupation
(hm2)
牧户打草场Clipping pasture 0.83 2.73 0.00 0.00
牧户开垦饲料地Fodder farmland 0.00 0.01 0.00 0.00
买入干草所需草场Clipping pasture for purchased hay 2.42 7.86 0.29 1.19
草地占用合计Total grassland occupation 3.25 8.90 0.89 1.19
耕地占用(公顷)
Arable land occupation
(hm2)
买入本市饲草料所需耕地Arable land occupation in same city 0.02 0.06 0.00 0.08
买入市外饲草料所需耕地Arable land occupation in other city 0.02 0.04 0.00 0.07
耕地占用合计Total arable land occupation 0.04 0.10 0.01 0.15
用水情况
Water consumption
(t)
买入本市饲草料灌溉水量Irrigation water consumption in same city 19.84 72.85 0.00 72.27
买入市外饲草料灌溉水量Irrigation water consumption in other city 45.15 85.16 0.00 138.62
牧户开垦草场灌溉水量Irrigation water consumption in farm 1.31 9.20 0.00 0.00
牧场牲畜需水量Water consumption for livestock 4.40 6.28 2.10 5.58
用水量合计Total water consumption 70.70 160.12 20.79 216.47
化石能源消耗Fossil energy consumption(MJ) 892.80 1675.85 305.41 1944.19
温室气体排放
Greenhouse gas emission
(t CO2eq)
牲畜肠道甲烷排放Ruminant Methane Emission 0.45 0.62 0.20 0.52
牲畜粪便甲烷排放Methane emissions from manure 0.02 0.05 0.00 0.02
牧场燃料消耗Fuel burning emission 0.06 0.11 0.02 0.12
化肥排放Emissions from fertilizer applied 0.01 0.04 0.00 0.06
饲草料运输排放Emissions from transport 0.01 0.02 0.00 0.01
总量Total emissions 0.55 0.78 0.31 0.73

Table 4

Economic benefits and environmental impact of 1 ton of dry cow manure"

处理
Treatment
牛粪成分
Cow manure
composition
产出有机肥
Organic fertilizer
Outputs
产出蘑菇
Mushroom
outputs
(kg)
耗水情况
Water consumption
(t)
化石能源消耗
Fossil energy consumption
(MJ)
温室气体排放
Greenhouse gas emissions
(kg CO2eq)
净收益
Net profit
(CNY)
总氮
TN
(%)
有机质
Organic matter (%)
产量
Outputs
(t)
总氮
TN
(%)
有机质
Organic matter (%)
FJ 1.84 69.77 0.70 1.65 40.36 1.40 96.45 6.24 84.85
QY 1.84 69.77 0.50 0.61 43.56 1.00 193.29 14.88 126.64
MG 1.84 69.77 0.49 1.61 30.31 62.00 0.98 74.87 5.76 177.87

Table 5

Input and output data of natural grassland improvement"

二铵使用
Ddiammonium fertilizer applied
(kg?hm-2)
尿素使用
Urea applied
(kg?hm-2)
农机消耗柴油
Diesel consumption by agricultural machinery (L?hm-2)
打草消耗柴油
Diesel consumption during hay clipping
(L?hm-2)
产出干草
Hay harvest
(kg?hm-2)
净收益
Net profit
(CNY/hm2)
天然打草场改良
Natural clipping pasture improvement
第1年1st year
225.00 150.00 34.65 6.60 1050.00 -720.00
第2年2nd year 0 0 0 6.60 990.00 930.00
第3年3rd year 0 0 0 6.60 945.00 885.00
第4年4th year 0 0 0 6.60 810.00 735.00
第5年5th year 0 0 0 6.60 615.00 525.00
平均Mean 45.00 30.00 6.90 6.60 885.00 465.00
对照草场5年平均
Untreated clipping pasture mean value during 5 years
0 0 0 6.60 525.00 420.00

Table 6

Environmental impact of natural grassland improvement"

施肥排放
Emissions from fertilizer applied (kg CO2eq)
不可再生能源消耗
Non renewable energy consumption (MJ)
温室气体排放
Greenhouse gas emission
(kg CO2eq)
改良草场
Natural clipping pasture improvement
每公顷Per hm2 142.95 366.60 171.15
每公斤收获Per kg hay harvest 0.17 0.35 0.20
对照草场
Untreated clipping pasture
每公顷Per hm2 0.00 118.35 9.15
每公斤收获Per kg hay harvest 0.00 0.22 0.02

Table 7

Comprehensive environmental impact and economic benefits of integrated production of 1 ton FPCM by Hulunber ecological grass and animal husbandry technology"

无处理对照
Untreated clipping pasture
天然打草场改良
Natural clipping pasture improvement
FJ QY MG
土地占用
Land occupation (hm2)
打草场Clipping pasture 1.19 0.71 0.71 0.71
耕地Arable land 0.15 0.15 0.15 0.15
耗水量
Water consumption
(t)
饲草种植灌溉用水Irrigation water consumption 210.89 210.89 210.89 210.89
牲畜饮用水Water for livestock 5.58 5.58 5.58 5.58
牲畜粪便处理用水Water for manure treatment 0.00 0.67 0.48 0.47
不可再生能源消耗
Non renewable energy consumption (MJ)
养殖场自身Farm consumption 1944.19 1944.19 1944.19 1944.19
牲畜粪便处理For manure treatment 0.00 46.29 35.93 92.76
打草场For hay clipping 140.84 218.65 218.65 218.65
温室气体排放
Greenhouse gas emission (t CO2eq)
牲畜肠道甲烷排放Ruminant methane emissions 0.52 0.52 0.52 0.52
牲畜粪便甲烷排放Methane emissions from manure 0.02 0.02 0.02 0.02
农场燃料消耗Diesel consumption by in farm 0.12 0.12 0.12 0.12
化肥排放Emission from fertilizer applied 0.06 0.06 0.06 0.06
运输排放Emission from transportation 0.01 0.01 0.01 0.01
养殖场总排放Total emission from farm 0.73 0.73 0.73 0.73
打草场Emission from hay clipping 0.01 0.12 0.12 0.12
净收益
Net profit
(CNY)
养殖场自身From livestock 686.19 686.19 686.19 686.19
牲畜粪便处理From manure treatments 0.00 40.72 60.78 85.36
打草场收益From hay clipping 499.80 329.22 329.22 329.22
[1] WATTIAUX M A, UDDIN M E, LETELIER P, JACKSON R D, LARSON R A. Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Applied Animal Science, 2019,35(2):238-254.
[2] GERBER P J, STEINFELD H, HENDERSON B, MOTTET A, OPIO C, DIJKMAN J, FALCUCCI A, TEMPIO G. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO), 2013.
[3] PIRLO G, LOLLI S. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). Journal of Cleaner Production, 2019,211:962-971.
[4] WANG X Q, LEDGARD S, LUO J F, GUO Y Q, ZHAO Z Q, GUO L, LIU S, ZHANG N N, DUAN X Q, MA L. Environmental impacts and resource use of milk production on the north China plain, based on life cycle assessment. Science of the Total Environment, 2018,625:486-495.
[5] 黄文强, 董红敏, 朱志平, 刘翀, 陶秀萍, 王悦. 畜禽产品碳足迹研究进展与分析. 中国农业科学, 2015,48(1):93-111.
HUANG W Q, DONG H M, ZHU Z P, LIU C, TAO X P, WANG Y. Research progress and analysis of carbon footprint of livestock products. Scientia Agricultura Sinica, 2015,48(1):93-111. (in Chinese)
[6] 刘松. 关中地区奶牛饲料作物环境影响生命周期评价[D]. 杨凌: 西北农林科技大学, 2017.
LIU S. Life cycle assessment of dairy cattle feed crops in Guanzhong plain [D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[7] 倪茹. 呼和浩特奶牛养殖粪污排放与废水处理模式及其工艺改进[D]. 呼和浩特: 内蒙古大学, 2016.
NI R. Dairy farm waste emissions and improvement of treatment mode and process of wastewater in Hohhot[D]. Hohhot:Inner Mongolia University, 2016. (in Chinese)
[8] 姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望. 中国农业科学, 2019,52(9):1635-1645.
JIANG M H, LIU X C, TANG H J, XIN X P, CHEN J Q, DONG G, WU R Q, SHAO C L. Research progress and prospect of life cycle assessment in animal husbandry. Scientia Agricultura Sinica, 2019,52(9):1635-1645. (in Chinese)
[9] NOTARNICOLA B, SALA S, ANTON A, MCLAREN S J, SAOUTER E, SONESSON U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. Journal of Cleaner Production, 2017,140:399-409.
[10] MCCLELLAND S C, ARNDT C, GORDON D R, THOMA G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livestock Science, 2018,209:39-45.
[11] HELLER M C, KEOLEIAN G A. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States. Environmental Science & Technology, 2011,45(5):1903-1910.
[12] CHATTERTON J, GRAVES A, AUDSLEY E, MORRIS J, WILLIAMS A. Using systems-based life cycle assessment to investigate the environmental and economic impacts and benefits of the livestock sector in the UK. Journal of Cleaner Production, 2015,86:1-8.
[13] ESTEVES E M M, HERRERA A M N, ESTEVES V P P, MORGADO R V. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 2019,219:411-423.
[14] JOENSUU K, PULKKINEN H, KURPPA S, YPYÄ J, VIRTANEN Y. Applying the nutrient footprint method to the beef production and consumption chain. The International Journal of Life Cycle Assessment, 2019,24(1):26-36.
[15] GROENESTEIN C M, HUTCHINGS N J, HAENEL H D, AMON B, MENZI H, MIKKELSEN M H, MISSELBROOK T H, VAN BRUGGEN C, KUPPER T, WEBB J. Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe. Journal of Cleaner Production, 2019,211:1162-1170.
[16] BATTINI F, AGOSTINI A, BOULAMANTI A K, GIUNTOLI J, AMADUCCI S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Science of the Total Environment, 2014,481:196-208.
[17] LEDGARD S F, WEI S, WANG X Q, FALCONER S, ZHANG N N, ZHANG X Y, MA L. Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations. Agricultural Water Management, 2019,213:155-163.
[18] WANG X Q, KRISTENSEN T, MOGENSEN L, KNUDSEN M T, WANG X D. Greenhouse gas emissions and land use from confinement dairy farms in the Guanzhong plain of China-Using a life cycle assessment approach. Journal of Cleaner Production, 2016,113:577-586.
[19] ZHANG J, ZHUANG M H, SHAN N, ZHAO Q, LI H, WANG L G. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production system. Science of the Total Environment, 2019,670:1184-1189.
[20] XU X B, MA Z, CHEN Y Q, GU X M, LIU Q Y, WANG Y T, SUN M M, CHANG D H. Circular economy pattern of livestock manure management in Longyou, China. Journal of Material Cycles and Waste Management, 2018,20(2):1050-1062.
[21] 黄文强. 规模化养殖场牛奶生产碳足迹评估方法与案例分析[D]. 北京: 中国农业科学院, 2015.
HUANG W Q. Carbon footprint assessment methodology of milk production in intensive dairy farm and case study[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[22] 曹正纲. 黑龙江省奶牛场生命周期评价[D]. 哈尔滨: 东北农业大学, 2012.
CAO Z G. Life cycle assessment of dairy farm in Heilongjiang province, China[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)
[23] 刘艳娜, 史莹华, 严学兵, 王成章, 梁明根, 周路. 苜蓿青干草替代部分精料对奶牛生产性能及经济效益的影响. 草业学报, 2013,22(6):190-197.
LIU Y N, SHI Y H, YAN X B, WANG C Z, LIANG M G, ZHOU L. Effect of alfafa hay substituting for part of the concentrate, on the production of cows and economic profit. Acta Pratculturae Sinica, 2013,22(6):190-197. (in Chinese)
[24] 张晓明. 奶牛养殖业对环境的污染及其控制. 中国畜牧杂志, 2011,47(8):38-42.
ZHANG X M. Environmental pollution and control of dairy farming. Chinese Journal of Animal Science, 2011,47(8):38-42. (in Chinese)
[25] 吕通. 内蒙古牲畜养殖粪污排放特征及其产沼和减排潜力分析[D]. 呼和浩特: 内蒙古大学, 2016.
LV T. Emission characteristics and biogas production and emission reduction potential of livestock manure in Inner Mongolia. Hohhot: Inner Mongolia University, 2016. (in Chinese)
[26] SALOU T, LE MOUËL C, VAN DER WERF. Environmental impacts of dairy system intensification: The functional unit matters. Journal of Cleaner Production, 2017,140:445-454.
[27] ROY P, NEI D, ORIKASA T, XU Q, OKADOME H, NAKAMURA N, SHIINA T. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 2009,90(1):1-10.
[28] CAPPER J L, CADY R A, BAUMAN D E. The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science, 2009,87(6):2160-2167.
[29] BRAGHIERI A, PACELLI C, BRAGAGLIO A, SABIA E, NAPOLITANO F. The hidden costs of livestock environmental sustainability: The case of Podolian Cattle VASTOLA A//The Sustainability of Agro-food and Natural Resource Systems in the Mediterranean Basin, Cham: Springer International Publishing, 2015: 47-56.
[30] O′BRIEN D, SHALLOO L, PATTON J, BUCKLEY F, GRAINGER C, WALLACE M. A life cycle assessment of seasonal grass-based and confinement dairy farms. Agricultural Systems, 2012,107:33-46.
[31] TICHENOR N E, PETERS C J, NORRIS G A, THOMA G, GRIFFIN T S. Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. Journal of Cleaner Production, 2017,142:1619-1628.
[32] KUMAR R R, PARK B J, CHO J Y. Application and environmental risks of livestock manure. Journal of the Korean Society for Applied Biological Chemistry, 2013,56(5):497-503.
[33] JONES C S, DRAKE C W, HRUBY C E, SCHILLING K E, WOLTER C F. Livestock manure driving stream nitrate. Ambio, 2019,48:1143-1153.
[34] XU P, KOLOUTSOU-VAKAKIS S, ROOD M J, LUAN S J. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios. Science of the Total Environment, 2017607-608:78-86.
[35] 朱宁. 畜禽规模养殖户污染防治问题研究[D]. 中国农业科学院, 2016.
ZHU N. Research on pollution prevention of livestock scale farmers: A case study in layer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[36] 徐增让, 成升魁, 高利伟, 陈远生. 藏北牧区畜粪燃烧与养分流失的生态效应研究. 资源科学, 2015,37(1):94-101.
XU Z R, CHENG S K, GAO L W, CHEN Y S. Yak dung use as fuel and nutrient loss in the Northern Tibetan Plateau. Resources Science, 2015,37(1):94-101. (in Chinese)
[37] 朱海生, 董红敏, 左福元, 袁丰, 饶骏. 覆盖及堆积高度对肉牛粪便温室气体排放的影响. 农业工程学报, 2014,30(24):225-231.
ZHU H S, DONG H M, ZUO F Y, YUAN F, RAO J. Effect of covering on greenhouse gas emissions from beef cattle solid manure stored at different stack heights. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(24):225-231. (in Chinese)
[38] 马林, 柏兆海, 王选, 曹玉博, 马文奇, 张福锁. 中国农牧系统养分管理研究的意义与重点. 中国农业科学, 2018,51(3):406-416.
MA L, BAI Z H, WANG X, CAO Y B, MA W Q, ZHANG F S. Significance and research priority of nutrient management in soil-crop-animal production system in China. Scientia Agricultura Sinica, 2018,51(3):406-416. (in Chinese)
[39] 张建杰, 郭彩霞, 李莲芬, 张强. 农牧交错带农牧系统氮素流动与环境效应-以山西省为例. 中国农业科学, 2018,51(3):456-467.
ZHANG J J, GUO C X, LI L F, ZHANG Q. Nutrient flow and environmental effects on crop-livestock system in farming-pastoral transition zone-A case study in Shanxi province. Scientia Agricultura Sinica, 2018,51(3):456-467. (in Chinese)
[40] GU B J, JU X T, CHANG J, GE Y, VITOUSEK P M. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the USA, 2015,112(28):8792-8797.
[41] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016,49(3):503-517.
WANG J G, LIN S, LI B G. Nitrogen cycling and management strategies in Chinese agriculture. Scientia Agricultura Sinica, 2016,49(3):503-517. (in Chinese)
[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[3] JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645.
[4] GUO YongQing, TU Yan, ZHANG NaiFeng, LIU GuoHua, TANG DeFu, WANG ZongYong, ZHONG Hao, LI YaoJi, MA Lin. Current Situation and Optimization Strategy of Phosphorus Recommendation Level and Phosphate Application of Feed in China [J]. Scientia Agricultura Sinica, 2018, 51(3): 581-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!