Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (19): 3874-3882.doi: 10.3864/j.issn.0578-1752.2014.19.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Structures and Functions Prediction and Expression Profiles of Calreticulin as Calcium Binding Chaperones in Chicken

WANG Li-li, LI Nan, CAO Chang-yu, GONG Du-qiang, YU Dong, WANG Wei, LI Jin-long   

  1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030
  • Received:2013-07-08 Revised:2014-07-16 Online:2014-10-01 Published:2014-10-01

Abstract: 【Objective】 The aim of the current study is to reveal the evolutionary relationships, and investigate the protein structure and functions and the expression profiles of calreticulin (CRT) as a key Ca2+ binding molecular chaperone within the endoplasmic reticulum (ER) of chicken.【Method】The nucleotides and amino acids of CRT in 12 species of vertebrates recorded in Gene bank were analyzed for evolutionary relationships by Laser Gene, and the structures and functions of CRT protein in chicken were predicted by bioinformatics, and the expression profiles of CRT in 30 organizations of chicken was analyzed by real-time PCR.【Result】Results of homology analysis showed that compared with the other 11 species of nucleotide sequences of CRT gene in chicken, gallus gallus and oryctolagus cuniculus had the highest nucleotide sequence homology, which was 78.7%, in addition, gallus gallus and oncorhynchus mykiss had the lowest homology, which was 70.5%. In the homology of amino acid sequences, the relationship between gallus gallus and crotalus adamanteus cadam is the closest by 85.0%, and the furthest relationships with gallus gallus is oncorhynchus mykiss which was 69.0% in amino acid sequence, besides, the homology of gallus gallus with cricetulus griseus, macaca mulatta, homo sapiens, oryctolagus cuniculus, sus scrofa, bos taurus, and xenopus (silurana) tropicalisis relatively close to almost above 80.1%. The protein structure and function prediction revealed that the CRT of chicken was constitute with 404 amino acids, and had a relative molecular mass of 46.8802 kD and a theoretical isoelectric point of 4.41, moreover, the negative charge is 102 amino acid residues and the positive charge amino acid residues is 53. The molecular formula of the CRT was C2074H3107N543O684S9. The CRT of chicken had 22 hydrophobic regions, which of the C end and the N end had a high hydrophobic, while the hydrophilic of C end is stronger than that of N, and the protein formed a secondary structure as α1(7-17)2(22-25)1(26)- β2(38-41)3(50-54)4(69-70)5(75-82)6(92-99)7(110-114)8(129-133)9(144-151)10(171-178)11(183-187)12(314-322)13(326-332)3(337-348)4(350-375)- α5(377-379)6(395- 401). CRT belongs to the transmembrane proteins and secreted protein, has signal peptides. The enzyme classification of CRT was EC 3.2.1.55 or EC 3.4.24.68. Tissue expression assay indicated that the gene of CRT expressed widely in chicken tissues, in which the lleum, glandular stomach and duodenum were highly more than the kidney (control) by 20 times. 【Conclusion】The sequence of nucleotide and amino acid in chicken CRT is relatively conserved in 12 vertebrate species. CRT is a transmembrane secretion protein and acidic protein. It belongs to the alpha-N-Arabia-glucosidase or Tentoxilysin, which catalyzed the hydrolysis  of the end non-reducing α-L-arabinofuranosidase residues in the terminal of α-L-arabinoside, which effected the α-L- arabinofuranosidase, Arabic glycans containing (1,3) and/or (1,5) glucosidic bond, Arab xylan and arabinogalactan. CRT combined specifically with the carbohydrate molecules and Ca2+, which could monitor glycoprotein assembly and folding and Ca2+ regulation, and plays an important role in the digestive system.

Key words: chicken, Calreticulin, structure and functions, expression profiles, evolutionary relationship

[1]    Leach M R, Cohen-Doyle M F, Thomas D Y, Williams D B. Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. The Journal of Biological Chemistry, 2002, 277(33):29686-29697.
[2]    Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. International Journal of Biochemistry & Cell Biology, 2005, 37(2):260-266.
[3]    Tufi R, Panaretakis T, Bianchi K, Criollo A, Fazi B, Di Sano F, Tesniere A, Kepp O, Paterlini-Brechot P, Zitvogel L, Piacentini M, Szabadkai G, Kroemer G. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death and Differentiation, 2008, 15(2):274-282.
[4]    Groenendyk J, Lynch J, Michalak M. Calreticulin, Ca2+, and calcineurin-signaling from the endoplasmic reticulum. Molecules and Cells, 2004, 17(3):383-389.
[5]    Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. The Journal of Biological Chemistry, 2002 , 277(48):46696-46705.
[6]    Galluzzi L, Kepp O, Morselli E, Vitale I, Senovilla L, Pinti M, Zitvogel L, Kroemer G. Viral strategies for the evasion of immunogenic cell death. Journal of Internal Medicine, 2010, 267(5): 526-542.
[7]    Simmen T, Lynes E M, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria associated membrane (MAM). Biochim Biophys Acta, 2010, 1798(8): 1465-1473.
[8]    Gold L I, Eggleton P, Sweetwyne M T, Van Duyn L B, Greives M R, Naylor S M, Michalak M, Murphy-Ullrich J E. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. The Faseb Journal, 2010, 24(3):665 -683.
[9]    Michalak M, Groenendyk J, Szabo E, Gold L I, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal, 2009,417(3):651-666.
[10]   Obeid M, Tesniere A, Ghiringhelli F, Fimia G M, Apetoh L, Perfettini J L, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13(1):54-61.
[11]   Peng R Q, Chen Y B, Ding Y, Zhang R, Zhang X, Yu X J, Zhou Z W, Zeng Y X, Zhang X S. Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World Journal of Gastroenterology, 2010,16 (19) :2428-2434.
[12]   Ostwald T J, MacLennan D H. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. The Journal of Biological Chemistry, 1974, 249(3):974-979.
[13]   Smith M J, Koch G L. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. The Embo Journal, 1989, 8(12):3581-3586.
[14]   Vassilakos A, Michalak M, Lehrman M A, Williams D B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry, 1998, 37(10): 3480-3490.
[15]   Qiu Y, Michalak M. Transcriptional control of the calreticulin gene in health and disease. The International Journal of Biochemistry & Cell Biology, 2009, 41(3):531-538.
[16]   Tarr J M, Young P J, Morse R, Shaw D J, Haigh R, Petrov P G, Johnson S J, Winyard P G, Eggleton P. A mechanism of release of calreticulin from cells during apoptosis. Journal of Molecular Biology, 2010,401(5):799-812.
[17]   Korbelik M, Zhang W, Merchant S. Involvement of damage- associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunology Immunotherapy, 2011, 60(10): 1431-1437.
[18]   Kozlov G, Pocanschi C L, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams D B, Gehring K. Structural basis of carbohydrate recognition by calreticulin. Journal of Biological Chemistry, 2010, 285(49): 38612-38620.
[19]   Thammavongsa V, Mancino L, Raghavan M. Polypeptide substrate recognition by calnexin requires specific conformations of the calnexin protein. The Journal of Biological Chemistry, 2005, 280(39): 33497-33505.
[20]   Ellgaard L, Frickel E M. Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochemistry and Biophysics, 2003, 39(3):223-247.
[21]   Totani K, Ihara Y, Matsuo I, Ito Y. Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose- type glycans. The Journal of Biological Chemistry, 2006, 281(42): 31502-31508.
[22]   Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S. Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. The Journal of Biological Chemistry, 2004, 279(43):44907-44914.
[23]   Jayaraman S, Eswaramoorthy S, Kumaran D, Swaminathan S. Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin. Proteins, 2005, 61(2):288-295.
[24]   Hosokawa N, Tremblay L O, You Z, Herscovics A, Wada I, Nagata K. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. The Journal of Biological Chemistry. 2003, 278(28): 26287-26294.
[25]   Chaudhuri T K, Paul S. Protein-misfolding diseases and chaperone- based therapeutic approaches. The Febs Journal, 2006, 273(7): 1331-1349.
[26]   Ma Y, Hendershot L M. ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy, 2004, 28(1/2): 51-65.
[27]   Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 2004, 73:1019-1049.
[28]   Michalak M, Robert Parker J M, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 2002, 32(5/6):269-278.
[29]   Guo L, Groenendyk J, Papp S, Dabrowska M, Knoblach B, Kay C, Parker J M, Opas M, Michalak M. Identification of an N-domain histidine essential for chaperone function in calreticulin. The Journal of Biological Chemistry, 2003, 278(50):50645-50653.
[30]   Edlind T, Smith L, Henry K, Katiyar S, Nickels J. Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling. Molecular Microbiology, 2002, 46(1):257- 268.
[31]   Kaur R, Castaño I, Cormack B P. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrobial Agents and Chemotherapy, 2004, 48(5):1600 -1613.
[32]   Patterson R L, Van Rossum D B, Gill D L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell, 1999, 98(4): 487-499.
[33]   Bonilla M, Cunningham K W. Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Molecular Biology of the Cell, 2003, 14(10): 4296-4305.
[34]   Aramburu J, Heitman J, Crabtree G R. Calcineurin: a central controller of signalling in eukaryotes. Embo Reports, 2004, 5(4): 343-348.
[35]   Bonilla M, Nastase K K, Cunningham K W. Essential role of calcineurin in response to endoplasmic reticulum stress. The Embo Journal, 2002, 21 (10):2343-2353.
[36]   Nelson M T, Todorovic S M, Perez-Reyes E. The role of T-type calcium channels in epilepsy and pain. Current Pharmaceutical Design, 2006, 12(18):2189-2197.
[37]   Altier C, Zamponi G W. Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends in Pharmacological Sciences, 2004, 25(9): 465-470.
[38]   Zhang S L, Yu Y, Roos J, Kozak J A, Deerinck T J, Ellisman M H, Stauderman K A, Cahalan M D. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature, 2005, 437(7060):902-905.
[39]   Jr Putney J W. Capacitative calcium entry: sensing the calcium stores.  Journal of Cell Biology, 2005, 169(3):381-382.
[40]   Roos J, DiGregorio P J, Yeromin A V, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak J A, Wagner S L, Cahalan M D, Veliçelebi G, Stauderman K A. STIM1, an essential and conserved component of store-operated Ca2+ channel function. The Journal of Cell Biology, 2005, 169(3):435-445.
[41]   Jr Putney J W, Broad L M, Braun F J, Lievremont J P, Bird G S. Mechanisms of capacitative calcium entry. Journal of Cell Science, 2001, 114(12):2223-2229.
[42]   Bolotina V M, Csutora P. CIF and other mysteries of the store- operated Ca2+-entry pathway. Trends in Pharmacological Sciences, 2005, 30(7):378-387.
[43]   Pocanschi C L, Kozlov G, Brockmeier U, Brockmeier A, Williams D B, Gehring K. Structural and functional relationships between the lectin and arm domains of calreticulin. The Journal of Biological Chemistry, 2011, 286(31): 227266-227277.
[44]   Michalak M, Corbett E F, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochemical Journal, 1999, 344(2):281-292.
[45] Krause K H, Michalak M. Calreticulin. Cell, 1997, 88(4):439-443.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[15] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!