Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (18): 3588-3595.doi: 10.3864/j.issn.0578-1752.2014.18.007

• PLANT PROTECTION • Previous Articles     Next Articles

Sublethal Effects of Beauveria bassiana Balsamo on Life Table Parameters of Subsequent Generations of Bemisia tabaci Gennadius

WANG Deng-jie1, ZANG Lian-sheng2, ZHANG Ye3, WANG Hai-hong1, LEI Zhong-ren1   

  1. 1Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    2
    Faculty of Agronomy, Jilin Agricultural University, Changchun 130118; 3Institute of Plant  Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
  • Received:2014-02-19 Revised:2014-03-24 Online:2014-09-16 Published:2014-09-16

Abstract: 【Objective】 Beauveria bassiana (Bals.) Vuill., an important entomopathogenic fungus, has been widely used to control Bemisia tabaci Gennadius. No much research has been conducted to study the sublethal effects of fungus on life table parameters generations of insects, while sublethal effects of fungal infection can have important implications for the population dynamics of the host offsprings, which ultimately contributes to the status of the target insect as a pest. The objective of this study is to compare life tables of subsequent generations of B. tabaci arising from parental generations exposed in the third nymphal stages to B. bassiana and controls, and to investigate the sublethal effects of fungus on life table parameters of B. tabaci offsprings. 【Method】 Developmental, survival, and fecundity rate data were analyzed by using the age-stage, two-sex life table in fungus-treated B. tabaci. Those exposed to distilled water were considered as control. Means and standard errors of population growth parameters were calculated by using the bootstrap method. The t-test was used to evaluate the differences in the population parameters, development times, and fecundities between treated B. tabaci and control. 【Result】 There were significant differences in pre-adult developmental time, total preoviposition period, 1st-4th instars survival and life table parameters between fungus-treated whiteflies and control. In comparison to controls (20.59 d), parental generations exposed to fungus caused longer pre-adult development times (26.58 d). Fungus exposure caused lower survival rate (0.195) for subsequent generations individuals than control (0.76). The intrinsic rate of increase (r), finite rate (λ), net reproductive rate (R0), mean generation time (T) and gross reproductive rate (GRR) were 0.063 d-1,1.065 d-1, 6.85,30.613 d and 41.883, respectively, for treated whiteflies and 0.137 d-1,1.147 d-1,33.443,25.575 d and 51.44, respectively, for control. The population growth of fungus-treated B. tabaci was slower than control. 【Conclusion】 Offsprings of fungus-treated B. tabaci compared to control increased their population slower, had higher mortality. However, fungal treatment didn’t impose significant effect on fecundity of B. tabaci. This information can provide insights into the long-term effects of applied entomopathgenic fungi on B. tabaci populations.

Key words: Beauveria bassiana, Bemisia tabaci, life table, sublethal effects

[1]    Brown J K, Frohlich D R, Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 1995, 40: 511-534.
[2]    Osborne L S, Landa Z. Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist, 1992, 75: 456-471.
[3]    Faria M, Wraight S P. Biological control of Bemisia tabaci with fungi. Crop Protection, 2001, 20: 767-778.
[4]    Varma A, Malathi V A. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology, 2003, 142: 145-164.
[5]    Perring T M. The Bemisia tabaci species complex. Crop Protection, 2001, 20(9): 725-737.
[6]    Boykin L M, Shatters R G, Rosell R C, McKenzie C L, Bagnall R A, De Barro P, Frohlich D R. Global relationship of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution, 2007, 44: 1306-1319.
[7]    Guiral P, Beitia F, Cenis J L. Biotype determination of Spanish populations of Bemisia tabaci on cotton in Isreal. Environmental Entomology, 1992, 21: 556-559.
[8]    Wang Z, Yan H, Yang Y, Wu Y. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 2010, 66: 1360-1366.
[9]    闫文茜, 王相晶, 张友军, 王少丽. 北京地区蔬菜烟粉虱种群动态及其对烟碱类杀虫剂的抗药性监测. 植物保护, 2012, 38(5): 154-157.
Yan W Q, Wang X J, Zhang Y J, Wang S L. Population dynamics of the vegetable whitefly, Bemisia tabaci, and its resistance to neonicotinoid insecticides in Beijing area. Plant Protection, 2012, 38(5): 154-157. (in Chinese)
[10]   McCoy C W, Samson R A , Boucias D G. Entomogenous fungi// Ignoffo C M, Mandava N B. Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A: Entomogenous Protozoa andFungi. Boca Raton, FL: CRC Press, 1988: 151-236.
[11]   张烨, 雷仲仁, 王海鸿, 吉青战. 球孢白僵菌HsbA蛋白的原核表达及免疫定位. 中国农业科学, 2013, 46(21): 4534-4541.
Zhang Y, Lei Z R, Wang H H, Ji Q Z. Prokaryocyte expression and immune localization of HsbA in Beauveria bassiana. Scientia Agricultura Sinica, 2013, 46(21): 4534-4541. (in Chinese)
[12]   Liu Z, Lei Z, Hua B, Wang H, Liu T. Germination Behavior of Beauveria bassiana (Deuteromycotina: Hyphomycetes) on Bemisia tabaci (Hemiptera: Aleyrodidae) nymphs. Journal of Entomology Science, 2010, 45(4): 322-334.
[13]   Wraight S P, Carruthers R I, Bradley C A, Jaronski S T, Lacey L A, Wood P, Galaini-Wraight S. Pathogenitity of the entomopathogenic fungi Paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii. Journal of Invertebrate Pathology, 1988, 71: 217-226.
[14]   Wraight S P, Carruthers R I, Jaronski S T, Bradley C A, Garza C J, Galaini-Wraight S. Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biological Control, 2000, 17: 203-217.
[15]   Quesada-Moraga E, Maranhao E A A, Valverde-Garcîa, Santiago- Álvarez C. Selection of Beauveria bassiana isolate for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of the virulence, thermal requirements, and toxicogenic activity. Biological Control, 2006, 36: 274-287.
[16]   Liu T X, Stansly P A. Effects of relative humidity on efficacy of BotaniGuardTM (Beauveria bassiana) on nymphs of sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) on hibiscus in greenhouses. Southwest Entomologist, 2009, 32: 189-191.
[17]   刘召. 白僵菌加1菌株生物学习性及其对烟粉虱致病机理的初步研究[D]. 杨凌: 西北农林科技大学, 2006.
Liu Z. Biological characteristics of Beauveria bassiana isolate Canada 1 and its pathogenesis to Bemisia tabaci[D]. Yangling: Northwest A&F University, 2006. (in Chinese)
[18]   Quesada-Moraga E, Santos-Quirós R, Valverde-Garcîa, Santiago- Álvarez C. Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). Journal of Invertebrate Pathology, 2004, 87: 51-58.
[19]   Latifian M, Soleimannejadian E, Ghazavi M, Mosadegh M S, Hayati J. Effects of sublethal concentrations of fungus Beauveria bassiana on the reproductive potentials of sawtoothed beetle Oryzaephilus surinamensis on commercial date cultivars. Plant Protection Journal, 2010, 2(4): 279-292.
[20]   Seyed-Talebi F S, Kheradmand K, Talaei-Hassanloui R, Talebi- Jahromi K. Sublethal effects of Beauveria bassiana on life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biocontrol Science and Technology, 2012, 22(3): 293-303.
[21]   Torrado-León E, Montoya-Lerma J, Valencia-Pizo E. Sublethal effects of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) on the white?y Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) under laboratory conditions. Mycopathologia, 2006, 162: 411-419.
[22]   Chi H, Su H Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006, 35(1): 10-21.
[23]   罗晨, 姚远, 王戎疆, 阎凤鸣, 胡敦孝, 张芝利. 利用mtDNA Co I基因序列鉴定我国烟粉虱的生物型. 昆虫学报, 2002, 45(6): 759-763.
Luo C, Yao Y, Wang R J, Yan F M, Hu D X, Zhang Z L. The use of mitochondrial cytochrome oxidase I (mt Co I) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomologica Sinica, 2002, 45(6): 759-763. (in Chinese)
[24]   臧连生, 刘银泉, 刘树生. 一种适合粉虱实验观察的新型微虫笼. 昆虫知识, 2005, 42(3): 329-331.
Zang L S, Liu Y Q, Liu S S. A new clip-cage for whitefly experimental studies. Chinese Bulletin of Entomology, 2005, 42(3): 329-331. (in Chinese)
[25]   Chi H, Liu H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 1985, 24(2): 225-240.
[26]   Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988, 17(1): 26-34.
[27]   Chi H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/ Twosex-MSChart.zip.
[28]   Efron B, Tibshirani R J. An Introduction to the Bootstrap. New York: Chapman and Hall, 1993.
[29]   Lewontin R C. Selection for colonizing ability//Baker H G, Stebbins G L. The Genetics of Colonizing Species. Academic, San Diego, California, 1965: 77-91.
[30]   任洁, 韩雪梅, 刘昭, 雷仲仁. 烟粉虱血细胞对白僵菌的防御反应. 中国蔬菜, 2013(12): 61-65.
Ren J, Han X M, Liu Z, Lei Z R. Defense response of hemolymph in Bemisia tabaci to Beauveria bassiana. China Vegetables, 2013(12): 61-65. (in Chinese)
[31]   Sharma S, Agarwal G P, Rajak R C. Pathophysiological alterations caused in Heliothis armigera by toxic metabolites of Beauveria bassiana (Bals) Vuill. Indian Journal of Experimental Biology, 1994, 32: 168-171.
[32]   Davidson E W, Patron R B R, Lacey L, Frutos R, Vey A, Hendrix D  L. Activity of natural toxins against the silverleaf whitefly, Bemisia argentifolii, using a novel feeding bioassay system. Entomologia Experimentalis et Applicata, 1996, 79(1): 25-32.
[33]   Moore D, Reed M, Le Patourel G, Abraham Y J, Prior C. Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviridae. Journal of Invertebrate Pathology, 1992, 60(3): 304-307.
[34]   Villani M, Krueger G, Schroeder S R, Consolie P C, Consolie N H, Preston-Wilsey L M, Roberts D W. Soil application effects of Metarhizium anisopliae on Japanese beetle (Coleoptera: Scarabeidae) behavior and survival in turfgrass microcosms. Environmental Entomology, 1994, 23: 502-503.
[35]   Lacey L A, Mesquita A L, Mercadier G, Debire R, Kazmer D J, Leclant F. Acute and sublethal activity of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) on adult Aphelinus asychis (Hymenoptera: Aphelinidae). Environmental Entomology, 1997, 26: 1452-1460.
[36]   Poprawski T J, Legaspi J C, Parker P E. Influence of entomopathogenic fungi on Serangium parcesetosum (Coleoptera: Coccienlidae), an important predator of whiteflies (Homoptera: Aleyrodidade). Environmental Entomology, 1982, 27(3): 785-795.
[1] XinHua LI,DengJie WANG,ZhongRen LEI,HaiHong WANG. Comparison of Life Tables for Experimental Populations of Individual- Rearing and Group-Rearing Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2021, 54(5): 959-968.
[2] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[3] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[4] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[5] CHEN YiQu, XIANG Xin, GONG ChangWei, WANG XueGui. Effects of Sublethal Doses of Chlorantraniliprole on the Detoxification Enzymes Activities and the Growth and Reproduction of Spodoptera exigua [J]. Scientia Agricultura Sinica, 2017, 50(8): 1440-1451.
[6] WANG ZeHua, FAN JiaMin, CHEN JinCui, GONG YaJun, WEI ShuJun . Sublethal Effects of Sulfoxaflor on the Growth and Reproduction of the Green Peach Aphid Myzus persicae [J]. Scientia Agricultura Sinica, 2017, 50(3): 496-503.
[7] ZHANG Hui, WU ShengYong, WANG XiaoQing, LEI ZhongRen. Changes in the Contents of Proteins and Free Amino Acid in haemolymph of Delia antique Adult Infected by Beauveria bassiana
 
[J]. Scientia Agricultura Sinica, 2017, 50(3): 591-598.
[8] ZHANG Hui, WU Sheng-yong, LI Juan, ZHANG Lu-lu, ZHANG Lin-ya, LEI Zhong-ren. Influence of Subculture on Virulence to Frankliniella occidentalis and Conidial Production of the Entomopathogenic Fungus Beauveria bassiana [J]. Scientia Agricultura Sinica, 2016, 49(15): 2977-2987.
[9] LIU Ming-yang, LEI Cai-yan, LI Jing-jing, LU Shao-hua, BAI Run-e, TANG Qing-bo, YAN Feng-ming. Differential Physiological and Biochemical Responses of Cucumber to the Feeding by Bemisia tabaci B and Q Biotypes [J]. Scientia Agricultura Sinica, 2016, 49(13): 2514-2523.
[10] CAI Chong, XU Ying-ying, CUI Xu-hong. Analysis of Physiological Characteristics with Response to Bemisia tabaci B Biotype in Different Resistant Varieties of Tomato [J]. Scientia Agricultura Sinica, 2016, 49(13): 2524-2533.
[11] YU Jie, WANG Deng-jie, LEI Zhong-ren, WANG Hai-hong. Identification and Expression Analysis on Lysozyme Gene of Bemisia tabaci [J]. Scientia Agricultura Sinica, 2016, 49(13): 2534-2543.
[12] ZHANG Wen-ping, LIU Bai-ming, ZHANG Shan, WAN Fang-hao, CHU Dong. Comparison of Feeding Behavior Between Two Bemisia tabaci Strains Using EPG Technique [J]. Scientia Agricultura Sinica, 2016, 49(13): 2544-2552.
[13] LI Mao-ye, CHEN De-xin, LIN Hua-feng, LI Shi-guang, PAN Jing, WU Sheng-yong. Integration of Emulsifiable Formulation Metarhizium flavoviride with Low-Rate Abamectin for Control of Bemisia tabaci Q Biotype [J]. Scientia Agricultura Sinica, 2016, 49(13): 2553-2560.
[14] LU Shao-hua, LI Jing-jing, LIU Ming-yang, BAI Run-e, TANG Qing-bo, YAN Feng-ming. Comparative Analysis of the Competitiveness Between B and Q Biotypes of Bemisia tabaci Under Laboratory Conditions [J]. Scientia Agricultura Sinica, 2015, 48(7): 1339-1347.
[15] LU Hui-hui, LIN Zhi-qiang, TAN Wan-zhong, LUO Hua-dong, XIAN Fei, BI Chao-wei, YU Yang, YANG Yu-heng. Insecticidal Protein Genes of Bacillus thuringiensis Strain CPB012 and Its Effects in Controlling Different Insect Pests [J]. Scientia Agricultura Sinica, 2015, 48(6): 1112-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!