Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (17): 3513-3522.doi: 10.3864/j.issn.0578-1752.2014.17.019

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles    

Creation and Chromosome FISH Identification of Cucumber Materials with Different Ploidies

GUAN Wei, ZHANG Yun-xia, YANG Shu-qiong, CHEN Jin-feng, LOU Qun-feng   

  1. College of Horticulture, Nanjing Agricultural University/State Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2014-02-25 Online:2014-09-01 Published:2014-04-16

Abstract: 【Objective】 The narrow genetic basis and limited genetic diversity of germplasm resources were the main bottlenecks of genetic and breeding researches of cucumber (Cucumis sativus L.). This research aimed to create different euploidy and aneuploidy cucumber germplasm materials, and to establish a reliable method for identifying chromosomal constitution of the new materials, which would lay a foundation for the researches of screening chromosome lines, chromosome localization and genetic breeding. 【Method】 The germinating seeds of the North China ecotype inbred line ‘Changchunmici’ of C. sativus were treated with 0.4% colchicine solution to induce the chromosome doubling. Autotriploid was obtained through culturing the 35-45 d zygotic embryo from the cross of the induced autotetraploid and diploid. The chromosomal ploidy or number of the induced plants and hybrids were investigated using chromosome counting, combined with the morphology, leaf stomata under electron microscope scanning. Fluorescence in situ hybridization (FISH) was carried out to ascertain the chromosomal constitution of the induced plants based on the number, intensity and location of specific probe signals. 【Result】 According to the ploidy identification based on the mitotic metaphase chromosome number, eight autotetraploidy plants (2n=28) and three aneuploidy plants (2n=16, 19, or 27) were obtained in this study. Autotriploid plants (2n=21) were produced from the cross of autotetraploid and diploid. FISH signals of Type III (cucumber centromere probe) and 45S rDNA were multiple changes among diploid, triploid and tetraploid. The result further indicated the ploidy level. There were differences in morphologic characteristics among different ploidy plants of ‘Changchunmici’. Compared with diploid, tetraploid had significant differences in morphologic characteristics. The difference among triploid, aneuploidy and diploid were not significant, but the aneuploid grew weaker and with late flowering period and low fruit setting rate. Results from leaf stomata under electron microscope scanning showed that there were differences among different ploidy plants. With the increase of ploidy, the length and width of leaf stomata rose notably, but the stomatal density declined obviously, which could be used as an aid for identifying the ploidy of cucumber. The tandem repetitive sequence (45S rDNA and Type III) and chromosome-specific single copy gene Csa006700 were used as FISH probes to identify chromosomal constitution of the aneuploidy plant with the chromosome number of 16. FISH results from repetitive probes on the mitotic metaphase chromosomes showed that the extra two chromosomes were chromosomes 1 or 2. Further, the chromosome 2 specific gene probe-Csa006700 showed the signals on one pair of chromosomes. These results confirmed that this aneuploidy plant was assigned as tetrasome polyploidy with two extra chromosome 1 of cucumber (2n=14+2). These results confirmed that colchicine could directly not only induce autopolyploid, but also induce a variety of aneuploid. 【Conclusion】 It is a rapid method to create cucumber different euploidy and aneuploidy germplasm materials using colchicine, and the chromosomal constitution could be identified by FISH analysis based on the chromosome specific probes.

Key words: cucumber , colchicine , euploid , aneuploid , fluorescence in situ hybridization (FISH)

[1]韦荣昌, 吴庆华, 马小军, 谭小明, 李小勇, 施力军, 白隆华. 植物多倍体的研究进展. 种子, 2013, 32(7): 50-52.
Wei R C, Wu Q H, Ma X J, Tan X M, Li X Y, Shi L J, Bai L H. Research progress of plant polypoid. Seed, 2013, 32(7): 50-52. (in Chinese)
[2]Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytologist, 2010, 186(1): 5-17.
[3]Khush G S, Singh R J, Sur S C, Librojo A L. Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics, 1984, 107(1): 141-163.
[4]Nikolova V, Niemirowicz-Szczytt K. Diploidization of cucumber (Cucumis sativus L.) haploids by colchicine treatment. Acta Societatis Botanicorum Poloniae, 1996, 65: 311-317.
[5]陈劲枫, 雷春, 钱春桃, 罗向东, 庄飞云. 黄瓜多倍体育种中同源四倍体的合成和鉴定. 植物生理学通讯, 2004, 40(2): 149-152.
Chen J F, Lei C, Qian C T, Luo X D, Zhuang F Y. Synthesis and characterization of autotetraploid in cucumber polyploid breeding. Plant Physiology Journal, 2004, 40(2): 149-152. (in Chinese)
[6]鄢郁霖, 王小蓉, 唐海东, 蓝丽, 李焕秀, 贺忠群, 汤浩茹. 秋水仙素处理对黄瓜生长发育及诱变效应研究. 长江蔬菜, 2010(6): 8-11.
Yan Y L, Wang X R, Tang H D, Lan L, Li H X, He Z Q, Tang H R. Effects of colchicines treatment on growth and development and mutagenic of cucumber. Journal of Changjiang Vegetables, 2010(6): 8-11. (in Chinese)
[7]刁卫平, 贾媛媛, 江彪, 鲍生有, 娄群峰, 陈劲枫. 黄瓜未授粉子房培养获得同源四倍体. 园艺学报, 2008, 35(12): 1781-1786.
Diao W P, Jia Y Y, Jiang B, Bao S Y, Lou Q F, Chen J F. Induction of autotetraploid cucumbers by unpollinated ovary culture and their characterization. Acta Horticulturae Sinica, 2008, 35(12): 1781-1786. (in Chinese)
[8]Diao W P, Bao S Y, Jiang B, Cui L, Qian C T, Chen J F. Cytological studies on meiosis and male gametophyte development in autotetraploid cucumber. Biologia Plantarum, 2010, 54(2): 373-376.
[9]刁卫平, 崔利, 江彪, 鲍生有, 陈劲枫. 黄瓜同源三倍体创制及减数分裂行为观察. 西北植物学报, 2009, 29(1): 36-42.
Diao W P, Cui L, Jiang B, Bao S Y, Chen J F. Creation and meiosis studies of autotriploid in cucumber. Acta Botanica Boreali- Occidentalia Sinica, 2009, 29(1): 36-42. (in Chinese)
[10]Diao W P, Bao S Y, Jiang B, Cui L, Chen J F. Primary trisomics obtained from autotriploid by diploid reciprocal crosses in cucumber. Sexual Plant Reproduction, 2009, 22(1): 45-51.
[11]Diao W P, Bao S Y, Jiang B, Cui L, Qian C T, Chen J F. Cytogenetic studies on microsporogenesis and male gametophyte development in autotriploid cucumber (Cucumis sativus L.): implication for fertility and production of trisomics. Plant Systematics and Evolution, 2009, 279: 87-92.
[12]Chen J F, Staub J E, Adelberg J W, Jiang J M. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Canadian Journal of Botany, 1999, 77(3): 389-393.
[13]Koo D H, Hur Y, Jin D C, Bang J W. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Molecules and Cells, 2002, 13(3): 413-418.
[14]Zhao X, Lu J Y, Zhang Z H, Hu J J, Huang S W, Jin W W. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics, 2011, 38(1): 39-45.
[15]徐延浩, 杨飞, 程有林, 马璐, 王建波, 李立家. 45S rDNA和5S rDNA在南瓜、丝瓜和冬瓜染色体上的比较定位. 遗传, 2007, 29(5): 614-620.
Xu Y H, Yang F, Cheng Y L, Ma L, Wang J B, Li L J. Comparative analysis of rDNA distribution in metaphase chromosomes of cucurbitaceae species. Hereditas (Beijing), 2007, 29(5): 614-620. (in Chinese)
[16]李琦, 马璐, 黄婧, 李立家. 西瓜、苦瓜与罗汉果染色体的rDNA定位及其核型分析. 武汉大学学报: 理学版, 2007, 53(4): 449-456.
Li Q, Ma L, Huang J, Li L J. Location of rDNA and karyotype analysis in watermelon, Momordica charantia and Momordica grosvenori chromosome. Journal of Wuhan University: Natural Science Edition, 2007, 53(4): 449-456. (in Chinese)
[17]Lou Q F, Zhang Y X, He Y H, Li J, Jia L, Cheng C Y, Guan W, Yang S Q, Chen J F. Single copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. The Plant Journal, 2014, 78(1): 169-179.
[18]雷春, 陈劲枫, 张晓青, 陈丽娟, 张永兵. 不同倍性黄瓜的形态和一些生理生化指标比较. 植物生理学通讯, 2005, 41(4): 471-474.
Lei C, Chen J F, Zhang X Q, Chen L J, Zhang Y B. Morphologies and several physiological and biochemical indexes of cucumbers (Cucumis sativus L.) with different ploidies. Plant Physiology Journal, 2005, 41(4): 471-474. (in Chinese)
[19]陈劲枫, 钱春桃. 利用几种园艺作物卷须制片鉴定染色体数目的研究. 园艺学报, 2002, 29(4): 378-380.
Chen J F, Qian C T. Studies on chromosome preparations using plant tendril as source tissue. Acta Horticulturae Sinica, 2002, 29(4): 378-380. (in Chinese)
[20]曹清河, 陈劲枫, 罗向东, 钱春桃, 郭军洋. 用组培芽鉴定组培材料染色体数目的方法. 植物生理学通讯, 2003, 39(6): 655-657.
Cao Q H, Chen J F, Luo X D, Qian C T, Guo J Y. Chromosome count using buds in vitro. Plant Physiology Journal, 2003, 39(6): 655-657. (in Chinese)
[21]Lou Q F, He Y H, Cheng C Y, Zhang Z H, Li J, Huang S W, Chen J F. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. Plos One, 2013, 8(5): e62676.
[22]叶德友, 王暄, 张燕霞, 钱春桃, 陈劲枫. 酸黄瓜南方根结线虫病抗性的解剖学及其细胞学研究. 植物病理学报, 2010, 40(5): 495-503.
Ye D Y, Wang X, Zhang Y X, Qian C T, Chen J F. Anatomy and cytology of sour cucumber for its resistance to the root-knotnematode Meloidogyne incognita. Acta Phytopathologica Sinica, 2010, 40(5): 495-503. (in Chinese)
[23]张振超, 张蜀宁, 张伟, 张红亮. 四倍体不结球白菜的诱导及染色体倍性鉴定. 西北植物学报, 2007, 27(1): 28-32.
Zhang Z C, Zhang S N, Zhang W, Zhang H L. Induction of tetraploidy of non-heading Chinese cabbage with late-bolting and identification of chromosome configuration. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(1): 28-32. (in Chinese)
[24]杨桂娟, 姜淑慧, 忻如颖, 王建飞, 管荣展, 杨清. 利用染色体加倍技术创建油菜非整倍体. 西北植物学报, 2008, 28(8): 1559-1565.
Yang J J, Jiang S H, Xin R Y, Wang J F, Guan R Z, Yang Q. Creation of rapeseed aneuploids by chromosome doubling technique. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(8): 1559-1565. (in Chinese)
[25]谭平, 唐晓华, 劳世辉, 魏岳荣, 洪林. 秋水仙素诱导抗枯1号香蕉多倍体试验. 南方农业学报, 2012, 43(11): 1718-1722.
Tan P, Tang X H, Lao S H, Wei Y R, Hong L. In vitro polyploidy induction of banana Kangku 1 using colchicines. Journal of Southern Agriculture, 2012, 43(11): 1718-1722. (in Chinese)
[26]李云, 冯大领. 木本植物多倍体育种研究进展. 植物学通报, 2005, 22(3): 375-382.
Li Y, Feng D L. Advances in research into polyploidy breeding of woody plants. Chinese Bulletin of Botany, 2005, 22(3):375-382. (in Chinese)
[27]Arumuganathan K, Earle E D. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter, 1991, 9(3): 229-233.
[28]位芳, 张改生. 利用荧光原位杂交技术分析新合成异源四倍体拟南芥. 作物学报, 2010, 36(7): 1216-1220.
Wei F, Zhang G S. FISH analysis of resynthesized allotetraploid Arabidopsis. Acta Agronomica Sinica, 2010, 36(7): 1216-1220. (in Chinese)
[29]Robledo G, Lavia G I, Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics, 2009, 118(7): 1295-1307.
[30]汪卫星, 李春艳, 向素琼, 梁国鲁. 番木瓜四倍体与二倍体的核型分析及45S rDNA-FISH研究. 园艺学报, 2007, 34(2): 345-348.
Wang W X, Li C Y, Xiang S Q, Liang G L. Karyotypes analysis and 45S rDNA-FISH of the tetraploid and diploid in Carica papaya L. Acta Horticulturae Sinica, 2007, 34(2): 345-348. (in Chinese)
[31]轩淑欣, 申书兴, 赵建军, 张成合, 陈雪平, 郄丽娟. 25S rDNA和5S rDNA在大白菜中期染色体上的FISH定位. 中国农业科学, 2007, 40(4): 782-787.
Xuan S X, Shen S X, Zhao J J, Zhang C H, Chen X P, Qie L J. Location of 25S rDNA and 5S rDNA in Chinese cabbage-pe-tsai metaphase chromosome. Scientia Agricultura Sinica, 2007, 40(4): 782-787. (in Chinese)
[32]郄丽娟, 申书兴, 轩淑欣, 王彦华, 陈雪平, 张成合, 李晓峰, 罗双霞. 大白菜和结球甘蓝基因组原位杂交及核型分析. 园艺学报, 2007, 34(6): 1459-1464.
Qie L J, Shen S X, Xuan S X, Wang Y H, Chen X P, Zhang C H, Li X F, Luo S X. Karyotype analysis of Chinese cabbage and cabbage by genome in situ hybridization. Acta Horticulturae Sinica, 2007, 34(6): 1459-1464. (in Chinese)
[33]周树军, Jaap van Tuyl, 臧德奎, 夏宜平, 李方. 45S rDNA在4种百合属植物染色体上的物理定位. 园艺学报, 2008, 35(6): 859-862.
Zhou S J, Tuyl J V, Zang D K, Xia Y P, Li F. Physical localization of 45S rDNA on the chromosomes of 4 species of the genus Lilium. Acta Horticulturae Sinica, 2008, 35(6): 859-862. (in Chinese)
[34]Mishima M, Ohmido N, Fukui K, Yahara T. Trends in site-number change of rDNA loci during polyploidy evolution in Sanguisorba (Rosaceae). Chromosoma, 2002, 110(8): 550-558.
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[3] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[4] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[5] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[6] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[7] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[8] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
[9] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
[10] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[11] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
[12] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
[13] ZhiPing LIU,XuePing WU,RuoNan LI,FengJun ZHENG,MengNi ZHANG,ShengPing LI,XiaoJun SONG. Effect of Applying Chicken Manure and Phosphate Fertilizer on Soil Phosphorus Under Drip Irrigation in Greenhouse [J]. Scientia Agricultura Sinica, 2019, 52(20): 3637-3647.
[14] RuoNan LI,ShaoWen HUANG,JianShuo SHI,LiYing WANG,JiWei TANG,HuaiZhi ZHANG,Shuo YUAN,FengZhi ZHAI,YanLi REN,Li GUO. Optimization Management of Water and Fertilization for Winter-Spring Cucumber Under Greenhouse Drip Irrigation Condition [J]. Scientia Agricultura Sinica, 2019, 52(20): 3648-3660.
[15] ZHU ChangAn,HE ZhiHao,CAI ZeLin,LIU JianFei,ZHANG Zhi. Regulation of Comprehensive Nutritional Quality of Cucumber by Water and Fertilizer Coupling with Magnesium [J]. Scientia Agricultura Sinica, 2019, 52(18): 3258-3270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!