Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (7): 1370-1379.doi: 10.3864/j.issn.0578-1752.2013.07.007

• PLANT PROTECTION • Previous Articles     Next Articles

Screening of Surfactants for Promoting the Efficiency of Pesticide Used in Paddy Field

 XU  Guang-Chun, GU  Zhong-Yan, XU  De-Jin, XU  Xiao-Long   

  1. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2012-12-04 Online:2013-04-01 Published:2013-02-06

Abstract: 【Objective】The objective of this study is to filter out suitable surfactants based on improving the pesticide application efficiency in paddy field among 10 surfactants of 3 surfactant-types, organosilicone, alkylphenol polyoxyethylene and azone.【Method】Surface tension of 10 surfactant solutions was measured followed by national standard (GB 5549-1990) and the critical micelle concentration (CMC) of surfactant was also measured according to the change of surface tension of surfactants solutions. Then the proper surfactant solutions spraying in paddy field were selected on the basis of surface tension reducing efficiency, initial contact angle on rice leaf surface and maximum retention (Rm) by micro-weighing method.【Result】The surface tension values of PTS and NP-15 solutions at CMC were both more than the estimated critical surface tension (CST) values of rice leaves and the initial contact angles (>100°) on rice leaves were indicative of poor wetting and adhesion. GSS, KNS and GJZ could be wetting on rice leaf surface, but the initial contact angles (>90°) exhibited that droplets of solutions were hard to adhere to rice leaf surface and easy to roll or run off the rice leaf surface. The rest 5 surfactants at suitable concentrations could be used in paddy field and one of them was Silwet 408 showed good wetting and adhesion on rice leaf surface. At 30°, 45° and 60° inclination, its maximun run-off points ((14.33±0.27), (12.44±0.58) and (10.27±0.40) mg•cm-2) and Rm ((7.98±0.37), (6.84±0.40) and (5.23±0.23) mg•cm-2) of rice leaf surface were significantly greater than TX-10. After adding Silwet 408 at concentration of 125.0 mg•L-1 in water and three pesticides (chlopyrifos, validamycin and imidacloprid) solutions at recommended concentrations, values of surface tension of solutions decreased to 20.77-23.12 mN•m-1 and the initial contact angles reduced to 28.4°-67.1°. Excepting the chlopyrifos solution at recommended concentration, Rm of other solutions increased significantly. 【Conclusion】 The 5 surfactants tested at suitable concentrations can be used in paddy field. At the concentration of 125.0 mg•L-1, Silwet 408 solution is most suitable for spraying in paddy field.

Key words: initial contact angle , surface tension , surfactant , critical micelle concentration (CMC) , maximum retention (Rm)

[1]袁会珠, 齐淑华, 杨代斌. 药液在作物叶片的流失点和最大稳定持留量研究. 农药学学报, 2000, 2(4): 66-71.

Yuan H Z, Qi S H, Yang D B. Study on the point of run-off and the maximum retention of spray liquid on crop leaves. Chinese Journal of Pesticide Science, 2000, 2(4): 66-71. (in Chinese)

[2]袁会珠, 杨代斌, 闫晓静, 张琳娜. 农药有效利用率与喷雾技术优化. 植物保护, 2011, 37(5): 14-20.

Yuan H Z, Yang D B, Yan X J, Zhang L N. Pesticide efficiency and the way to optimize the spray application. Plant Protection, 2011, 37(5): 14-20. (in Chinese)

[3]Wirth W, Storp S, Jacobsen W. Mechanisms controlling leaf retention of agricultural spray solutions. Pesticide Science, 1991, 33(4): 411-420.

[4]顾中言, 许小龙, 韩丽娟. 不同表面张力的杀虫单微乳剂药滴在水稻叶面的行为特性. 中国水稻科学, 2004, 18(2): 176-180.

Gu Z Y, Xu X L, Han L J. Action of drops of monosultap ME with different surface tension on the rice leaf. Chinese Journal of Rice Science, 2004, 18(2): 176-180. (in Chinese)

[5]范鹏, 顾中言, 徐德进, 许小龙, 徐广春. 甲维盐微乳剂药液在水稻叶面的行为分析. 中国水稻科学, 2010, 24(5): 503-508.

Fan P, Gu Z Y, Xu D J, Xu X L, Xu G C. Action analysis of drops of emamection-benzoate microemulsion on rice leaf. Chinese Journal of Rice Science, 2010, 24(5): 503-508. (in Chinese)

[6]徐广春, 顾中言, 徐德进, 许小龙, 董玉轩. 常用农药在水稻叶片上的润湿能力分析. 中国农业科学, 2012, 45(9): 1731-1740.

Xu G C, Gu Z Y, Xu D J, Xu X L, Dong Y X. Wettablity analysis of pesticides on rice leaf. Scientia Agricultura Sinica, 2012, 45(9): 1731-1740. (in Chinese)

[7]Gaskin R E, Steele K D. A comparison of sticker adjuvants for their effects on retention and rainfastening of fungicide sprays. New Zealand Plant Protection, 2009, 62: 339-342.

[8]Gaskin R E, Pathan A K. Characterising plant surfaces and adjuvant interactions to improve pesticide spray retention and coverage on avocados. New Zealand Avocado Growers’ Association Annual Research Report, 2006, 6: 63-70.

[9]华乃震. 提高农药品种药效的增强剂 (Ⅱ). 农药, 2010, 49(2): 79-82.

Hua N Z. Enhancer of increasement pesticide products efficacy (Ⅱ). Agrochemicals, 2010, 49(2): 79-82. (in Chinese)

[10]Pedibhotla V K, Hall F R, Holmsen J. Deposit characteristics and toxicity of fipronil formulations for tobacco budworm (Lepidoptera: Noctuidae) control on cotton. Crop Protection, 1999, 18: 493-499.

[11]Zhang Y, Zhang G Y, Han F. The spreading and superspeading behavior of new glucosamide-based trisiloxane surfactants on hydrophobic foliage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276: 100-106.

[12]Xu L Y, Zhu H P, Ozkan H E, Thistle H W. Evaporation rate and development of wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosystems Engineering, 2010, 104: 1-10.

[13]徐德进, 顾中言, 徐广春, 许小龙, 范鹏. 药液表面张力与喷雾方法对雾滴在水稻植株上沉积的影响. 中国水稻科学, 2011, 25(2): 213-218.

Xu D J, Gu Z Y, Xu G C, Xu X L, Fan P. Effects of solution surface tension and spray methods on deposition of droplets on rice plants. Chinese Journal of Rice Science, 2011, 25(2): 213-218. (in Chinese)

[14]Watanabe T, Yamaguchi I. Studies on wetting phenomena on plant leaf surfaces. 3: A retention model for droplets on solid surfaces. Pesticide Science, 1992, 34(3): 273-279.

[15]Yu Y, Zhu H, Frantz J M, Reding M E, Chan K C, Ozkan H E. Evaporation and coverage area of pesticide droplets on hairy and waxy leaves. Biosystems Engineering, 2009, 104: 324-334.

[16]Muller C, Riederer M. Plant surface properties in chemical ecology. Journal of Chemical Ecology, 2005, 31(11): 2621-2651.

[17]Puente D W M, Baur P. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes. Pest Management Science, 2011, 67: 798-806.

[18]许小龙, 徐广春, 徐德进, 顾中言. 植物表面特性与农药雾滴行为关系的研究进展. 江苏农业学报, 2011, 27(1): 214-218.

Xu X L, Xu G C, Xu D J, Gu Z Y. Research progress on the relationship between characteristics of plant surface and behavior patterns of pesticide droplets. Jiangsu Journal of Agricultural Sciences, 2011, 27(1): 214-218. (in Chinese)

[19]屠豫钦. 农药剂型和制剂与农药的剂量转移. 农药学学报, 1999, 1(1): 1-6.

Tu Y Q. Pesticide formulation and dose transfer. Chinese Journal of Pesticide Science, 1999, 1(1): 1-6. (in Chinese)

[20]袁会珠, 齐淑华. 植物叶片对药液的最大承载能力初探. 植物保护学报, 1998, 25(1): 95-96. 

Yuan H Z, Qi S H. Maximum deposition of adjuvant solution on plant leaf. Acta Phytophylacica Sinica, 1998, 25(1): 95-96. (in Chinese)

[21]顾中言, 许小龙, 韩丽娟. 一些药液难在水稻、小麦和甘蓝表面润湿展布的原因分析. 农药学学报, 2002, 4(2): 75-80.

Gu Z Y, Xu X L, Han L J. The cause of the difficulty in wet-spreading of some insecticides on rice, wheat and wildcabbage leaves. Chinese Journal of Pesticide Science, 2002, 4(2): 75-80. (in Chinese)

[22]庞红宇, 黄琴, 马琛, 杜凤沛. 雾滴体积和测量时间与雾滴接触角的关系. 河南农业科学, 2005(12): 51-54.

Pang H Y, Huang Q, Ma C, Du F P. Studies on relation of droplet contact angel to droplet volume and measuring time. Journal of Henan Agricultural Science, 2005(12): 51-54. (in Chinese)

[23]Gaskin R E, Steele K D, Forster W A. Characterising plant surfaces for spray adhesion and retention. New Zealand Plant Protection, 2005, 58: 179-183.

[24]Radulovic J, Sefiane K, Shanahan M E R. Spreading and wetting behavior of trisiloxanes. Journal of Bionic Engineering, 2009, 6: 341-349.

[25]Graham-Bryce I J. A consideration of the effectiveness and disadvantages of current methods and of the scope for improvement. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1977, 281: 163-179.
[1] WANG Quan, WANG JiaYin, ZHU Han, ZHUO JinYu, LIU DongYang, SHEN QiRong. Purification and Identification of the Biosurfactant Produced by Enterobacter Hormaechei B4 and Its Application [J]. Scientia Agricultura Sinica, 2017, 50(22): 4350-4361.
[2] XU Guang-chun, GU Zhong-yan, XU De-jin, XU Xiao-long. Characteristics of Rice Leaf Surface and Droplets Deposition Behavior on Rice Leaf Surface with Different Inclination Angles [J]. Scientia Agricultura Sinica, 2014, 47(21): 4280-4290.
[3] XU Guang-Chun, GU Zhong-Yan, XU De-Jin, XU Xiao-Long, DONG Yu-Xuan. Wettability Analysis of Pesticides on Rice Leaf [J]. Scientia Agricultura Sinica, 2012, 45(9): 1731-1740.
[4] XU De-Jin, GU Zhong-Yan, XU Guang-Chun, XU Xiao-Long, DONG Yu-Xuan. Effects of Droplet Density and Droplet Size on Control Efficiency of Chlorantraniliprole Against Cnaphalocrocis medinalis (Guenée) [J]. Scientia Agricultura Sinica, 2012, 45(4): 666-674.
[5] QIAO Li-juan,WANG Li-xian,WANG Li-gang,YAN Hua,ZHANG Long-chao
. Diversification of Porcine Pulmonary Surfactant Protein A and Its Significance in Acute Lung Injury
[J]. Scientia Agricultura Sinica, 2010, 43(14): 3027-3035 .
[6] LIU Gen-xin,ZHANG Ji-yu,WU Pei-xing,LI Jian-yong,LIU Ying,ZHOU Xu-zheng,WEI Xiao-juan,NIU Jian-rong,LI Bing
. Preparation and Evaluation of O/W Pharmaceutical Microemulsions#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3328-3333 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!