Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (15): 2990-2997.doi: 10.3864/j.issn.0578-1752.2014.15.009

• PLANT PROTECTION • Previous Articles     Next Articles

Sensitivity of Different Field Populations of Tetranychus urticae Koch (Acari: Tetranychidae) to the Acaricides in Beijing Area

 GONG  Ya-Jun-1, WANG  Ze-Hua-1, SHI  Bao-Cai-1, CUI  Wen-Xia-1, JIN  Gui-Hua-1, SUN  Yan-Yan-2, WEI  Shu-Jun-1   

  1. 1、Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097;
    2、Plant Protection Station of Tongzhou District, Beijing 101101
  • Received:2014-02-25 Online:2014-08-01 Published:2014-03-25

Abstract: 【Objective】The objectives of this study are to survey the sensitivity of different populations of Tetranychus urticae Koch to the acaricides in Beijing area, as well as the relationship between their sensitivity to the acaracides and the activity of resitance-related enzymes. 【Method】 Bioassays of four frequently used acaricides of bifenazate, abamectin, spirodiclofen and pyridaben to five field populations of the T. urticae, i.e. Fangshan, Huairou, Changping, Yanqing and Pinggu of Beijing area, were conducted by using modified slide-dip method. Bifenazate resistance-related mutations were detected by PCR amplification and sequencing of the CYTB gene from individual specimens. Additionally, the activities of four resistance-related enzymes of cytochrome P450 monooxygenases, acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione S-transferase (GST) were tested by microplate assay in microplate reader for the five populations.【Result】All of the five field populations of Fangshan, Huairou, Changping, Yanqing and Pinggu were sensitive to bifenazate, with LC50 of 2.4880, 6.4693, 6.2398, 0.7882 and 14.7783 mg•L-1, respectively, followed by the abamectin, with LC50 of 22.4712, 35.4431, 14.5260, 15.4904 and 14.0023 mg•L-1, respectively. T. urticae showed low sensitivity to the spirodiclofen and pyridaben in the five tested populations. In populations of Fangshan, Huairou, Changping, Yanqing and Pinggu, the LC50 of spirodiclofen was 49.6833, 81.8826, 72.9609, 204.4609 and 1 433.5137 mg•L-1, respectively, whereas that of pyridaben was 202.6902, 806.8324, 375.3518, 188.3234 and 2 310.9040 mg•L-1, respectively. The sensitivity of the AChE, CarE and GST of Yanqing population was higher than that of other populations, with a value of 14.9508 U/(mg protein), 0.2271 μmol?mg-1 protein?30 min-1 and 58.2962 U/(mg protein), respectively. The cytochrome P450 monooxygenases of Huairou population was significantly lower than that of other populations with a value of 1.4272 μmol?mg-1 protein?30 min-1. There was no linear relationship between the toxicity of bifenazate, abamectin, spirodiclofen and pyridaben and the activities of cytochrome P450 monooxygenases, AChE, CarE and GST. One individual from Huairou population with one site mutation on the CYTB gene (the first codon position of the 126th amino acid was changed from G to A) was detected in 288 individuals of five populations, which lead the amino acid Gly mutated into Ser. The low level of resistance-related mutation in the detected populations of the T. urticae was consistent with their high sensitivity to the bifenazate. 【Conclusion】 T. urticae in Beijing area showed highest sensitivity to the bifenazate, followed by the abamectin, and lastly to spirodiclofen and pyridaben. The sensitivity of T. urticae to the four tested acaricides is not linearly related to the activity of cytochrome P450 monooxygenases, AChE, CarE and GST. The PCR detection of resistance-related mutation indicated that the Huairou population has high risk to generate resistant individuals to the bifenazate. PCR method could fastly and accurately detect the development of acaracide resistance than the bioassay method. In the controlling practice, the pyridaben should not be used, the spirodiclofen should be avoided, and abamectin and bifenazate could be used alternatively.

Key words: Tetranychus urticae Koch , bioassay , enzyme activity , bifenazate

[1]Sun J T, Lian C, Navajas M, Hong X Y. Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae). BMC Genetics, 2012, 13: 8.

[2]Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology, 2010, 40(8): 563-572.

[3]周玉书, 朴春树, 仇贵生, 张平, 孟威, 方红. 不同温度下3种害螨实验种群生命表研究. 沈阳农业大学学报, 2006, 37(2): 173-176.

Zhou Y S, Piao C S, Qiu G S, Zhang P, Meng W, Fang H. Life table for 3 mite species under different temperature. Journal of Shenyang Agricultural University, 2006, 37(2): 173-176. (in Chinese)

[4]郭玉杰, 牛离平, 董慧芳. 观赏植物上二斑叶螨的发生和为害. 昆虫知识, 1988, 25(6): 353-356.

Guo Y J, Niu L P, Dong H F. The occurrence and of the harm of Tetranychus urticae on ornamental plant leaf. Entomological Knowledge, 1988, 25(6): 353-356. (in Chinese)

[5]李瑞娟, 王开运, 姜兴印, 仪美芹. 二斑叶螨的抗药性研究进展. 山东农业大学学报: 自然科学版, 2005, 36(4): 637-639.

Li R J, Wang K Y, Jiang X Y, Yi M Q. Advances of research on resistance of Tetranychus urticae Koch. Journal of Shandong Agricultural University: Natural Science, 2005, 36(4): 637-639. (in Chinese)

[6]周玉书, 朴春树, 仇贵生, 张平, 牟连晓. 苹果园3种害螨对7种杀螨剂敏感性鉴定. 中国果树, 2005(3): 29-31.

Zhou Y S, Piao C S, Qiu G S, Zhang P, Mu L X. Sensitivity of three spider mite to seven acaricides in apple tree. China Fruits, 2005(3): 29-31. (in Chinese)

[7]朱亮, 康总江, 魏书军, 宫亚军, 石宝才. 2012年北京各区县不同寄主上二斑叶螨发生调查. 北方园艺, 2013(4): 120-123.

Zhu L, Kang Z Z, Wei S J, Gong Y J, Shi B C. Investigation of occurrence of Tetranychus urticae Koch in diffenent areas of Beijing in 2012. Northern Horticulture, 2013(4): 120-123. (in Chinese)

[8]高新菊, 张志刚, 段辛乐, 沈慧敏. 二斑叶螨抗四螨嗪品系筛选及其解毒酶活力变化. 中国农业科学, 2012, 45(7): 1432-1438.

Gao X J, Zhang Z G, Duan X L, Shen H M. Resistance selection against clofentezine in Tetranychus urticae (Koch) and change of its detoxification enzymes activity. Scientia Agricultura Sinica, 2012, 45(7): 1432-1438. (in Chinese)

[9]岳秀利, 高新菊, 王进军, 吕娟娟, 沈慧敏. 二斑叶螨内参基因的筛选及解毒酶基因的表达水平. 中国农业科学, 2013, 46(21): 4542-4549.

Yue X L, Gao X J,Wang J J, Lü J J, Shen H M. Selection of reference genes and study of the expression levels of detoxifying enzymes of Tetranychus urticae (Acari: Tetranychidae). Scientia Agricultura Sinica, 2013, 46(21): 4542-4549. (in Chinese)

[10]吕娟娟, 王进军, 高新菊, 沈慧敏. 二斑叶螨乙酰辅酶A羧化酶基因全长cDNA克隆及其生物信息学分析. 中国农业科学, 2013, 46(8): 1736-1744.

Lü J J, Wang J J, Gao X J, Shen H M. Cloning and bioinformatics analysis of acetyl-CoA carboxylase gene cDNA in Tetranychus urticae. Scientia Agricultura Sinica, 2013, 46(8): 1736-1744. (in Chinese)

[11]Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(16): 5980-5985.

[12]Van Asperen K. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 1962, 8(4): 401-414.

[13]Zhu K Y, Gao J R. Increased activity associated with reduced sensitivity of acetylcholinesterase in organophosphate-resistant greenbug, Schizaphis Graminum (Homoptera: Aphididae). Pesticide Science, 1999, 55(1): 11-17.

[14]Yu S, Nguyen S. Detection and biochemical characterization of insecticide resistance in the diamondback moth. Pesticide Biochemistry and Physiology, 1992, 44(1): 74-81.

[15]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1): 248-254.

[16]唐启义, 冯明光. DPS数据处理系统-实验设计、统计分析及数据挖掘. 北京: 科学出版社, 2007.

Tang Q Y, Feng M G. DPS Data Processing System: Experimental Design, Statistical Analysis, and Data Mining. Beijing: Science Press, 2007. (in Chinese)

[17]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.

[18]高新菊, 沈慧敏. 二斑叶螨对甲氰菊酯的抗性选育及解毒酶活力变化. 昆虫学报, 2011, 54(1): 64-69.

Gao X J, Shen H M. Resistance selection with fenpropathrin and the change of detoxification enzyme activities in Tetranychus urticae Koch (Acari: Tetranychidae). Acta Entomologica Sinica, 2011, 54(1): 64-69. (in Chinese)

[19]王开运, 赵卫东, 姜兴印, 王金花. 十种杀螨剂对二斑叶螨抗性种群不同发育阶段的毒力比较. 农药, 2002, 41(3): 29-31.

Wang K Y, Zhao W D, Jiang X Y, Wang J H. The toxicity testing of resistance population of Tetranychus urticae Koch to several acaricides. Agrochemicals, 2002, 41(3): 29-31. (in Chinese)

[20]王兴全, 杨顺义, 兰清秀, 高新菊, 沈慧敏. 二斑叶螨对甲氰菊酯抗药性选育及其对17种常用杀螨剂的交互抗性. 甘肃农业大学学报, 2009, 44(2): 97-100.

Wang X Q, Yang S Y, Lan Q X, Gao X J, Shen H M. Insecticide- resistance selection of Tetranychus urticae Koch to fenpropathrin and its cross-resistance to seventeen common insecticides. Journal of Gansu Agricultural University, 2009, 44(2): 97-100. (in Chinese)

[21]Tirello P, Pozzebon A, Cassanelli S, Van Leeuwen T, Duso C. Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Experimental and Applied Acarology, 2012, 57(1): 53-64.

[22]刘庆娟, 李丽莉, 刘永杰, 门兴元, 周仙红, 张思聪, 张安盛, 于毅. 四个二斑叶螨地理种群卵对10种杀螨剂的敏感性差异. 植物保护, 2012, 38(4): 178-180.

Liu Q J, Li L L, Liu Y J, Men X Y, Zhou X H, Zhang S C, Zhang A S, Yu Y. Differences in the sensitivities of the geographical strains eggs of four Tetranychus urticae to ten acaricide. Plant Protection, 2012, 38(4): 178-180. (in Chinese)

[23]刘庆娟, 刘永杰, 于毅, 周仙红. 二斑叶螨抗性种群对6种杀螨剂的敏感性测定. 山东农业科学, 2011, 12: 67-69.

Liu Q J, Liu Y J, Yu Y, Zhou X H. Sensibility testing of resistant populations of Tetranychus urticae to six acaricides. Shandong Agricultural Sciences, 2011, 12: 67-69. (in Chinese)

[24]Van Leeuwen T, Tirry L, Nauen R. Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochemistry and Molecular Biology, 2006, 36(11): 869-877.

[25]李忠洲, 周玉书, 朴静子, 田如海, 高萍. 二斑叶螨对螺螨酯的抗性选育及其解毒酶活性测定. 应用昆虫学报, 2013, 50(2): 454-459.

Li Z Z, Zhou Y S, Piao J Z, Tian R H, Gao P. Determination of selection for resistance to spirodiclofen and its effect on detoxification enzymes in Tetranychus urticae. Chinese Journal of Applied Entomology, 2013, 50(2): 454-459. (in Chinese)

[26]刘庆娟, 刘永杰, 于毅, 周仙红, 马惠. 二斑叶螨对七种杀螨剂的抗药性测定及其机理研究. 应用昆虫学报, 2012, 49(2): 376-381.

Liu Q J, Liu Y J, Yu Y, Zhou X H, Ma H. The study on resistance and its mechanism of Tetranychus urticae to several common insecticides. Chinese Journal of Applied Entomology, 2012, 49(2): 376-381. (in Chinese)

[27]赵卫东, 王开运, 姜兴印, 仪美芹. 二斑叶螨对阿维菌素、哒螨灵和甲氰菊酯的抗性选育及其解毒酶活力变化. 昆虫学报, 2003, 46(6): 788-792.

Zhao W D, Wang K Y, Jiang X Y, Yi M Q. Resistance selection by abamectin, pyridaben and fenpropathrin and activity change of detoxicant enzymes in Tetranychus urticae. Acta Entomologica Sinica, 2003, 46(6): 788-792. (in Chinese)

[28]宫亚军, 石宝才, 王泽华, 康总江, 金桂华, 崔文夏, 魏书军. 新型杀螨剂-联苯肼酯对二斑叶螨的毒力测定及田间防效. 农药, 2013, 52(3): 225-227.

Gong Y J, Shi B C, Wang Z H, Kang Z J, Jin G H, Cui W X, Wei S J. Toxicity and field control efficacy of the new acaricide bifenazate to the two-spotted spider mite Tetranychus urticae Koch. Agrochemicals, 2013, 52(3): 225-227. (in Chinese)
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[3] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[4] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[5] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[6] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[7] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[8] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[9] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[10] Qi FENG,ChaoZheng LI,GuiTian GAO,You WU,Yan XIAO,WuQi ZHAO,YuShan LEI. Influence of Three Enzymes on Oxidation of Ascorbic Acid in Postharvest 'Hayward' and 'Huate' Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(4): 811-822.
[11] XU Ming,LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui. Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata [J]. Scientia Agricultura Sinica, 2020, 53(24): 5091-5103.
[12] CHEN Rui,GAO He,ZHANG GuoJun,ZHU KeYan,CHENG WeiNing. Effects of Secondary Metabolites in Wheat Kernels on Activities of Three Detoxifying Enzymes and Related Gene Expression in Sitodiplosis mosellena [J]. Scientia Agricultura Sinica, 2020, 53(20): 4204-4214.
[13] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[14] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
[15] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!