Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (11): 2078-2087.doi: 10.3864/j.issn.0578-1752.2014.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Distribution of Powdery Mildew Resistance Gene Pm21 in Chinese Winter Wheat Cultivars and Breeding Lines Based on Gene-Specific Marker

 JIANG  Zheng-1, 2 , WANG  Qi-Lin-1, 3 , WU  Jian-Hui-1, 3 , XUE  Wen-Bo-1, 2 , ZENG  Qing-Dong-1, 3 , HUANG  Li-Li-1, 3 , KANG  Zhen-Sheng-1, 3 , HAN  De-Jun-1, 2   

  1. 1、State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi;
    2、College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi;
    3、College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2013-11-27 Online:2014-06-06 Published:2014-01-23

Abstract: 【Objective】Powdery mildew, caused by Blumeria graminis f. sp.tritici (Bgt), is an important disease that causes substantial yield losses in wheat (Triticum aestivum L.) in China, there is a great significance for using resistance genes to control this disease. Powdery mildew resistance gene Pm21, transferred from Haynaldia villosa by a 6VS/6AL translocation, confers durable and broad-spectrum resistance to the disease. This study is to develop gene specific PCR marker, analyze the distribution of Pm21 in China winter wheat regions, and to provide a theoretical basis and technical support for reasonable arrangement and marker-assisted selection for Pm21.【Method】Based on the sequence of Stpk-V gene which was cloned and related to the resistance pathway (GenBank accession number: HQ864471.1), the protein sequences were extracted and the conservative start-stop sites were analyzed by Pfam software, in order to amplify this gene specifically, the marker WS-1 was developed excluding conserved domain. For constructing an F2 populations derived from susceptible cultivar Avocet S and the lines 92R137 carrying Pm21, infection types in F2 plants were evaluated by artificial inoculation with isolate E09 during seedling stage, F2 plants were amplified by WS-1, and the testing results and infection types were analysed to confirm the accuracy of WS-1. A total of 662 wheat cultivars and breeding lines growing in different winter wheat regions in China were detected by WS-1 to analyze the distribution of Pm21, and the materials carrying Pm21 were further tested the resistance to powdery mildew under field conditions. In order to further prove the accuracy of WS-1, the marker NAU/xibao15902 developed by Cao Aizhong and others was used to amplify the lines with Pm21 and without Pm21 (50 samples from each type). 【Result】 As a dominant molecular marker, WS-1 could be amplified a 949 bp fragment in the lines with Pm21 on 8% non-denaturing polyacrylamide gel, but did not in the lines without Pm21. The 377 F2 populations segregated 286 resistant﹕91 susceptible fitting the 3﹕1 ratio, which indicated that Pm21 presents a single dominant gene, and the testing results by WS-1 were consistent with infection types. There were 49 lines showed positive strand in 662 lines, and the average distribution frequency of Pm21 gene was 7.4%; the lines containing Pm21 in Southwestern Winter Wheat Region, Northern China Plain Winter Wheat Region, Yellow and Huai Valley Facultative Wheat Region and Middle & Lower Yangtze Valley Winter Wheat Region were 33, 4, 9, and 3, and their frequencies were 34.4%, 5.3%, 3.1% and 1.5%, respectively.【Conclusion】WS-1 can be detected wheat cultivars and breeding lines which carry Pm21 accurately, also can be applied to the gene pyramiding breeding in the future. The distribution of Pm21 in winter wheat regions is different, the risk of pathogen directional selection will be promoted because of the high frequency of Pm21 gene in wheat cultivars of Sichuan and Guizhou provinces, and we should pay more attention to it in wheat breeding.

Key words: wheat , powdery mildew , Pm21 , gene-specific PCR marker , durable resistance of genes

[1]何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37(2): 202-215.

He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37(2): 202-215. (in Chinese)

[2]Bennett F G A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathology, 1984, 33(3): 279-300.

[3]Leath S, Bowen K L. Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology, 1989, 79(2): 152-155.

[4]谢超杰, 杨作民, 孙其信. 小麦抗白粉病基因. 西北植物学报, 2003, 23(5): 822-829.

Xie C J, Yang Z M, Sun Q X. Resistance genes to powdery mildew in wheat. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(5): 822-829. (in Chinese)

[5]赵紫慧, 黄江, 陆鸣, 王晓鸣, 吴龙飞, 武小菲, 赵鑫, 李洪杰. 山东省和河北省小麦白粉菌毒性与遗传多样性分析. 作物学报, 2013, 39(8): 1377-1385.

Zhao Z H, Huang J, Lu M, Wang X M, Wu L F, Wu X F, Zhao X, Li H J. Virulence and genetic diversity of Blumeria graminis f. sp. tritici collected from Shandong and Hebei provinces. Acta Agronomica Sinica, 2013, 39(8): 1377-1385. (in Chinese)

[6]Alam M A, Xue F, Wang C Y. Powdery mildew resistance genes in wheat: Identification and genetic analysis. Journal of Molecular Biology Research, 2011, 1(1): 21-39.

[7]杨立军, 曾凡松, 龚双军, 史文琦, 张学江, 汪华, 向礼波, 喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学, 2013, 46(16): 3354-3368.

Yang L J, Zeng F S, Gong S J, Shi W Q, Zhang X J, Wang H, Xiang L B, Yu D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Scientia Agricultura Sinica, 2013, 46(16): 3354-3368. (in Chinese)

[8]Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theoretical and Applied Genetics, 2013: 1-7.

[9]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013. http://www.shigen. nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

[10]曹世勤, 骆惠生, 武翠平, 金社林, 王晓鸣, 朱振东, 贾秋珍, 黄 瑾, 张勃, 尚勋武. 甘肃省主要小麦生产品种(系)及抗源材料抗白粉病基因推导分析. 作物学报, 2010, 36(12): 2107-2115.

Cao S Q, Luo H S, Wu C P, Jin S L, Wang X M, Zhu Z D, Jia Q Z, Huang J, Zhang B, Shang X W. Postulation of powder mildew resistance genes in 64 wheat varieties (lines) in Gansu Province, China. Acta Agronomica Sinica, 2010, 36(12): 2107-2115. (in Chinese)

[11]刘大钧, 齐莉莉, 陈佩度, 周波, 张守中. 导入小麦的外源染色体片段的准确鉴定及外源抗性基因的稳定性分析. 遗传学报, 1996, 23(1): 18-23.

Liu D J, Qi L L, Chen P D, Zhou B, Zhang S Z. Precise indentification of alien chormsome segment introduced in wheat and the stabilidy of its resistance gene. Acta Genetica Sinica, 1996, 23(1): 18-23. (in Chinese)

[12]齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞 渝, 周益林. 小麦白粉病新抗源-基因Pm21. 作物学报, 1995, 21 (3): 257-262.

Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z, Sheng B X, Xiang Q J, Duan X Y, Zhou Y L. Pm21-A new source for resistance to wheat powdery mildew. Acta Agronomica Sinica, 1995, 21(3): 257-262. (in Chinese)

[13]Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J, Chen X Y, Jia X. Development and identification of wheat-Haynaldia villosa 6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breeding, 2005, 124(2): 203-205.

[14]Qi L L, Cao M S, Chen P D, Li W L, Liu D J. Identification mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 39(1): 191-197.

[15]王振英, 赵红梅, 洪敬欣, 陈丽媛, 朱婕, 李刚, 彭永康, 解超杰, 刘志勇, 孙其信, 杨作民. 簇毛麦6VS上4个新分子标记的鉴定及与抗白粉病基因Pm21的连锁分析. 作物学报, 2007, 33(4): 605-611.

Wang Z Y, Zhao H M, Hong J X, Chen L Y, Zhu J, Li G, Peng Y K, Xie C J, Liu Z Y, Sun Q X, Yang Z M. Identification and analysis of four novel molecular markers linked to powdery mildew resistance gene Pm21 in 6VS chromosome short arm of haynaldia villosa. Acta Agronomica Sinica, 2007, 33(4): 605-611. (in Chinese)

[16]Liu Z, Sun Q, Ni Z, Yang T, McIntosh R A. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 1999, 118(3): 215-219.

[17]Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding, 2006, 125(3): 201-205.

[18]Chen X M, Luo Y H, Xia X C, Xia L Q, Chen X, Ren Z L, He Z H, Jia J Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breeding, 2005, 124(3): 225-228.

[19]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44(11): 2193-2215.

He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215. (in Chinese)

[20]Xu Y B, Xie C, Wan J, He Z, Prasanna B M. Marker-assisted selection in cereals: Platforms, strategies and examples. Cereal Genomics II. Springer Netherlands, 2013: 375-411.

[21]Cao A Z, Xing L, Wang X. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the USA, 2011, 108(19): 7727-7732.

[22]Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123(1): 21-29.

[23]盛宝钦, 段霞渝, 张新心. 小麦成株白粉病病情记载方法的改进. 植物保护, 1986, 3: 44-45.

Sheng B Q, Duan X Y, Zhang X X. The improved method of wheat powdery mildew disease of adult stage. Acta Phytophylacica Sinica, 1986, 3: 44-45. (in Chinese)

[24]Sharp P G, Kreis M, Shewry P R, Gale M D. Location of βamylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2): 286-290.

[25]Dangl J L, Horvath D M, Staskawicz B J. Pivoting the plant immune system from dissection to deployment. Science, 2013, 341(6147): 746-751.

[26]何光明, 孙传清, 付永彩. 水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合研究. 遗传学报, 2004, 31(8): 836-841.

He G M, Sun C Q, Fu Y C. Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice. Acta Genetica Sinica, 2004, 31(8): 836-841. (in Chinese)

[27]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1): 1-10.

[28]Michelmore R W, Christopoulou M, Caldwell K S. Impacts of resistance gene genetics, function, and evolution on a durable future. Annual Review of Phytopathology, 2013. 51: 291-319.

[29]段霞瑜, 盛宝钦, 周益林, 向齐君. 小麦白粉病菌生理小种的鉴定与病菌毒性的监测. 植物保护学报, 1998, 25(1): 31-36.

Duan X Y, Sheng B Q, Zhou Y L, Xiang Q J, Monitoring of thevirulence population of Erysiphe graminis f.sp. tritici. Acta Phytophylacica Sinica, 1998, 25(1): 31-36. (in Chinese)

[30]Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001, 120(2): 219-226..

[31]马渐新, 周荣华, 贾继增. 用基因组原位杂交与RFLP标记鉴定小麦-簇毛麦抗白粉病代换系. 遗传学报, 1997, 24(5): 447-452.

Ma J X, Zhou R H, Jia J Z. Identification of wheat-Haynaldia villosa substitution lines conferring resistance ro powdery mildew using genomic in situ hybridization and RFLP markers. Acta Genetica Sinica, 1997, 24(5) : 447-452. (in Chinese)

[32]Periyannan S, Moore J, Ayliffe M, Bansal U, Wang, X J, Huang L, Deal K, Luo M C, Kong X Y, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E. The gene Sr33, an ortholog of barley mla genes, encodes resistance to wheat stem rust race Ug99. Science, 2013, 341(6147): 786-788.

[33]Wis’niewska H, Kowalczyk K. Resistance of cultivars and breeding lines of spring wheat to fusarium culmorum and powdery mildew. Journal of Applied Genetics, 2005, 46(1): 35-40.

[34]高安礼, 何华纲, 陈全战, 张守忠, 陈佩度. 分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a和Pm21的聚合体. 作物学报, 2005, 31(11): 1400-1405.

Gao A L, He H G, Chen Q Z, Zhang S Z, Chen P D. Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection. Acta Agronomica Sinica, 2005, 31(11): 1400-1405. (in Chinese)

[35]桑大军, 许为钢, 胡琳. 河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种. 华北农学报, 2006, 21(1): 86-91.

Sang D J, Xu W G, Hu L. The molecular identification of powdery mildew resistance genesin the cultivars in Henan province and application of molecular marker-assisted breediding. Acta Agriculturae Boreali-Sinica, 2006, 21(1): 86-91. (in Chinese)

[36]董建力, 张增艳, 王敬东. 3种小麦抗白粉病基因聚合体的STS和SCAR标记. 西北农业学报, 2007, 16(3): 64-67.

Dong J L, Zhang Z Y, Wang J D. The molecular marker of STS and SCAR for pyramids of wheat powdery midew resistance genes. Acta Agriculturae Boreali-occidentalis Sinica, 2007, 16(3): 64-67. (in Chinese)

[37]Hung N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Khush G S. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics, 1997, 95(3): 313-320.

[38]王心宇, 陈佩度, 张守忠. 小麦白粉病抗性基因的聚合及其分子标记辅助选择. 遗传学报, 2001, 28(7): 640-646.

Wang X Y, Chen P D, Zhang S Z. Pyramiding and marker-assisted selection for powdery mildew resistance genes in common wheat. Acta Genetica Sinica, 2001, 28(7): 640-646. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!