Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (23): 4858-4867.doi: 10.3864/j.issn.0578-1752.2013.23.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Characterization of Both PvPGIP2 and TaLTP5 Transgenic Wheat Lines with Resistance to Take-all

 RONG  Wei-12, WANG  Jin-Feng-2, LI  Zhao-2, WANG  Ai-Yun-1, DU  Li-Pu-2, YE  Xing-Guo-2, WEI  Xue-Ning-2, ZHANG  Zeng-Yan-2   

  1. 1. College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004
    2.Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081
  • Received:2013-05-28 Online:2013-12-01 Published:2013-09-06

Abstract: 【Objective】 Take-all is a destructive disease of wheat production worldwide. The aim of this study is to develop and select stable PvPGIP2 and TaLTP5 transgenic wheat lines with resistance to take-all pathogen Gaeumannomyces graminis. 【Method】Gene recombination technology was used to prepare the transformation vector pA25-PvPGIP2-TaLTP5 expressing both PvPGIP2 and TaLTP5. Particle bombardment method was used to introduce both PvPGIP2 and TaLTP5 into wheat cultivar Yangmai 18. PCR, RT-PCR and qRT-PCR methods were used to detect the presence and transcript levels of PvPGIP2 and TaLTP5 in the transgenic wheat plants of T0-T4 generations. G. graminis mycelia plug inoculation and take-all severity and the disease index were used to score the resistance degrees of these transgenic wheat lines and non-transgenic wheat Yangmai 18 at young seedling-stage. 【Result】The results indicated that the introduced PvPGIP2 and TaLTP5 genes were stably inherited, and could be highly expressed in six transgenic wheat lines. The transgenic wheat plants expressing PvPGIP2 and TaLTP5 showed significantly enhanced resistance to G. graminis compared with non-transgenic wheat Yangmai 18. 【Conclusion】 These results suggested that the introduced PvPGIP2 and TaLTP5 genes can be used for improving wheat resistance to take-all.

Key words: wheat , PvPGIP2 , TaLTP5 , binary tansgene , take-all , transgenic

[1]Gutteridge R J, Bateman G L, Todd A D. Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments. Pest Management Science, 2003, 59: 215-224.

[2]祝秀亮, 李钊, 杜丽璞, 徐惠君, 杨丽华, 庄洪涛, 马翎健, 张增艳. 兼抗全蚀病和白粉病小麦新种质的创制与鉴定. 作物学报, 2012, 38(12): 2178-2184.

Zhu X L, Li Z, Du L P, Xu H J, Yang L H, Zhuang H T, Ma L J, Zhang Z Y. Development and characterization of wheat lines with resistance to take-all and powdery mildew diseases. Acta Agronomica Sinica, 2012, 38(12): 2178-2184. (in Chinese)

[3]Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, Van Roekel J S C, Baulcombe D C, Melchers L S, De Lorenzo G, Cervone F. Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. Molecular Plant-Microbe Interactions, 1997, 10(7): 852-860.

[4]Lafitte C, Barthe J P, Montillet J L, Touze A. Glycoprotein inhibitors of Colletotrichum lindemuthianum endopolygalacturonase in near isogenic lines of Phaseolus vulgaris resistant and susceptible to anthracnose. Physiologial Plant Pathology, 1984, 25: 39-53.

[5]Bergmann C W, Ito Y, Singer D. Ploygalacturcuase-inhibing protein accumulates in Phaseouls vulgaris L., in response to wounding, elicitors and fungal infection. The Plant Journal, 1994, 5(5): 625-634.

[6]Cervone F, De Lorenzo, Darvll A. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry, 1990, 29(2): 447-449.

[7]Frediani M, Cremonini R, Salvi G, Caprari C, Desiderio A, D’Ovidio R, Cervone F, De Lorenzo G. Cytological localization of the PGIP genes in the embryo suspensor cells of Phaseolus vulgavis L.. Theoretical and Applied Genetics, 1993, 87: 369-373.

[8]D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiology, 2004, 135: 2424-2435.

[9]Farina A, Rocchi V, Janni M, Benedettelli S, De Lorenzo G, Renato D’Ovidio. The bean polygalacturonase-inhibiting protein 2 (PvPGIP2) is highly conserved in common bean (Phaseolus vulgaris L.) germplasm and related species. Theoretical and Applied Genetics, 2009, 18: 1371-1379.

[10]D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni L M, Sella L, Tosi P, Favaron F. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta, 2006, 224: 633-645.

[11]党良, 王爱云, 徐惠君, 祝秀亮, 杜丽璞, 邵艳军, 张增艳. 抗根腐病的转GmPGIP3基因小麦扬麦18的获得与鉴定. 作物学报, 2012, 38(10): 1833-1838.

Dang L, Wang A Y, Xu H J, Zhu X L, Du L P, Shao Y J, Zhang Z Y. Development and characterization of GmPGIP3 transgenic Yangmai 18 with enhanced resistance to wheat common root rot. Acta Agronomica Sinica, 2012, 38(10):1833-1838. (in Chinese)

[12]王金凤, 李钊, 杜丽璞, 黄素萍, 徐惠君, 冯斗, 张增艳. 转PvPGIP2基因小麦的获得与纹枯病抗性鉴定. 植物遗传资源学报, 2013, 14(1): 179-183.

Wang J F, Li Z, Du L P, Huang S P, Xu H J, Feng D, Zhang Z Y. Development and characterization of PvPGIP2 transgenic wheat plants with enhanced resistance to Rhizoctonia cerelis. Journal of Plant Genetic Resources, 2013, 14(1): 179-183. (in Chinese)

[13]Van Loon L C, Van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55: 85-97.

[14]Kader J C. Lipid-transfer proteins in plants. Annual Review Plant Physiological Plant Molecular Biology, 1996, 47: 627-654.

[15]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 2002, 419: 399-403.

[16]Sujon S, Young J K, Ki D K, Byung K H, Sung H O, Jeong S S. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell and Reports, 2009, 28: 419-427.

[17]King G J, Turner V A, Hussey C E, Wurtele E S, Lee S M. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Molecular Biology, 1988, 10: 401-412.

[18]White A J, Dunn M A, Brown K, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. Journal of Experimental Botany, 1994, 45: 1885-1892.

[19]Sterk P, Booij H, Schellkens G A, Van Kammen A, De Vries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. The Plant Cell, 1991, 3: 907-921.

[20]Kader J C. Lipid-transfer proteins: A puzzling family of plant proteins. Trends in Plant Science, 1997, 2(2): 66-70.

[21]Cammue B P, Thevissen K, Hendriks M, Hendriks M, Eggermont K, Goderis I J, Osbron R W, Gerdette F, Kader J C. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiology, 1995, 109: 445-455.

[22]Sun J Y, Gaudet D A, Lu Z X, Frick M, Puchalski B, Laroche A. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Molecular Plant-Microbe Interactions, 2008, 21(3): 346-360.

[23]Zhu X L, Li Z, Xu H J, Zhou M P, Du L P, Zhang Z Y. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Function Integrative Genomics, 2012, 12: 481-488.

[24]崔洪志, 郭三堆. 双价杀虫基因植物表达载体的构建及其在烟草中的表达. 农业生物技术学报, 1998, 6(1): 8-12.

Cui H Z ,Guo S D. Construction of plant expression vectors harboring insecticidal genes and expression in tobacco. Journal of Agricultural Biotechnology, 1998, 6(1): 8-12. (in Chinese)

[25]冯道荣, 许新萍, 邱国华, 李宝健. 多个抗病抗虫基因在水稻中的遗传和表达. 科学通报, 2000, 45(15): 1593-1599.

Feng D R, Xu X P, Qiu G H, Li B J. Expression and inheritance of multiple transgenes in rice plants. Chinese Science Bulletin, 2000, 45(15): 1593-1599. (in Chinese)

[26]Ye X D, Al-Balibi S, Klflti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the Provitamin A (β-Carotene) biosynthetic pathway into (Carotenoid-free) rice endosperm. Science, 2000, 287: 303-305.

[27]徐惠君, 庞俊兰, 叶兴国, 杜丽璞, 李连城, 辛志勇, 马有志, 陈剑平, 陈炯, 程顺和. 基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究. 作物学报, 2001, 27(6): 684-689.

Xu H J, Pang J L, Ye X G, Du L P, Li L C, Xin Z Y, Ma Y Z, Chen J P, Chen J, Cheng S H. Study on the gene transferring of Nib8 into wheat for its resistance to the yellow mosaic virus by bombardment. Acta Agronomica Sinica, 2001, 27(6): 684-689. (in Chinese)

[28]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the USA, 1984, 81: 8014-8019.

[29]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.

[30]Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A, Sarniguet A. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all Gaeumannomyces graminis var. tritici on wheat roots. Molecular Plant Pathology, 2011, 12(9): 839-854.

[31]Bithell S L, Butler R C, Harrow S, McKay A, Cromey M G. Susceptibility to take-all of cereal and gross species, and their effects on pathogen inoculums. Annals of Applied Biology, 2011, 159: 252-266.

[32]Liu X, Yang L H, Zhou X Y, Zhou M P, Lu Y, Ma H X, Zhang H Y, Ma J L, Zhang Z Y. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Journal of Experimental Botany, 2013, 64(8): 2243-2253.

[33]Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specfic PCR marker linked with PM21 distinguisher chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed, 2006, 125: 201-205.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!