Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (21): 4471-4477.doi: 10.3864/j.issn.0578-1752.2013.21.009

• SPECIAL FOCUS: STUDIES ON CLIMATE CHANGE IMPACT ON CROP AND ANIMAL PRODUCTION FROM CHINA • Previous Articles     Next Articles

Effects of CO2 Concentration and Pesticide Resistance on Penetration Behaviors in Nilaparvata lugens (Homoptera: Delphacidae)

 LIU  Jing, WU  Shan-Shan, MENG  Ling, LI  Bao-Ping   

  1. College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education, Nanjing Agricultural University, Nanjing 210095
  • Received:2013-05-22 Online:2013-11-01 Published:2013-08-01

Abstract: 【Objective】This study was designed to clarify if the CO2 enrichment influences the feeding behaviors of Nilaparvata lugens and if there are differences in feeding behaviors between the planthopper varied in pesticide-resistance, which would provide data for an assessment of the virulence to rice plant of pesticide resistant N. lugens under the climate change. 【Method】Using the electrical penetration graph (EPG) technique stylet penetration behaviors were recorded to evaluate the performances of buprofezin-susceptible and -resistant strains (a 480-fold difference in resistance) on rice leaves under either ambient (390 μL•L-1) or elevated CO2 concentration (780 μL•L-1). Two-way ANOVAs were used to test the effects of CO2 and pesticide resistance on the six waveforms associated with the plant penetration activities in the total time and frequency. 【Result】N. lugens exhibited a tendency to shorten the phloem sap ingestion duration under the CO2 elevation, and the buprofezin-resistant N. lugens decreased the frequency of the penetration initiation under the elevated CO2 concentration (780 μL•L-1) as opposed to the ambient CO2 (390 μL•L-1). In comparison with the buprofezin-susceptible insect, the buprofezin-resistant spent more time for the salvation plus penetration movement and the stylet activity in xylem region, increased the frequency of the intracellular activity in phloem region, but decreased the frequency of the phloem sap ingestion and the stylet activity in xylem region. 【Conclusion】 The buprofezin-resistant N. lugens can be stronger in virulence to rice than the buprofezin-susceptible. The CO2 enrichment may slightly minimize the virulence of the buprofezin-susceptible N. lugens but have no obvious effects on the virulence of the buprofezin-resistant N. lugens.

Key words: CO2 concentration enrichment , pesticide resistance , electrical penetration graph (EPG) , climate change

[1]IPCC (Intergovernmental Panel on Climate Change). Climate change: the physical science basis summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change//Fuwa F. The Handbook of the Global Environment. Tokyo: Asakura Publishing Co. Ltd., 2007.

[2]Fajer E D, Bowers M D, Bazzaz F A. The effects of enriched CO2 atmospheres on the Buckeye butterfly, Junonia coenia. Ecology, 1991, 72(2): 751-754.

[3]Lincoln D E, Fajer E D, Jounson R H. Plant-insect herbivore interactions in elevated CO2 environments. Trends in Ecology & Evolution, 1993, 8(2): 64-68.

[4]Bezemer T M, Jones T H. Plant insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos, 1998, 82(2): 212-222.

[5]Stiling P, Cornelissen T. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 2007, 13(9): 1823-1842.

[6]Massad T J, Dyer L A. A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod-Plant Interactions, 2010, 4(3): 181-188.

[7]孟玲, 李保平. 大气二氧化碳浓度升高对植物-昆虫相互关系的影响. 生态学杂志, 2005, 24(2): 200-205.

Meng L, Li B P. Effects of elevated carbon dioxide on insect-plant interactions. Chinese Journal of Ecology, 2005, 24(2): 200-205. (in Chinese)

[8]程遐年, 吴进才, 马飞. 褐飞虱的研究与防治. 北京: 中国农业出版社, 2003.

Cheng X N, Wu J C, Ma F. Research and Control of Nilaparvata lugens. Beijing: China Agriculture Press, 2003. (in Chinese )

[9]邵振润, 张帅, 李永平, 沈晋良, 龙丽萍, 高聪芬, 郭井全. 中国水稻主产区褐飞虱对3种杀虫剂的抗性监测. 农药学学报, 2011, 13(1): 91-94.

Shao Z R, Zhang S, Li Y P, Shen J L, Long L P, Gao C F, Guo J Q. Dynamics of resistance to imidacloprid, buprofezin, fipronil in Nilaparvata lugens (Stöl) during the year 2006 to 2009 in China. Chinese Journal of Pesticide Science, 2011, 13(1): 91-94. (in Chinese)

[10]刘泽文, 刘成君, 张洪伟, 韩召军. 褐飞虱抗吡虫啉品系生物适合度研究. 昆虫知识, 2003, 40(5): 419-422.

Liu Z W, Liu C J, Zhang H W, Han Z J. Relative biological fitness of imidacloprid resistant strains of Nilaparvata lugens. Entomological Knowledge, 2003, 40(5): 419-422. (in Chinese)

[11]Pritchard S G, Rogers H H, Prior S A, Peterson C M. Elevated CO2 and plant structure: a review. Global Change Biology, 1999, 5: 807-837.

[12]杨松涛, 李彦舫, 胡玉熹, 林金星. CO2浓度倍增对10种禾本科植物叶片形态结构的影响. 植物学报, 1997, 39(9): 859-866.

Yang S T, Li Y F, Hu Y X, Lin J X. Effect of CO2 concentration doubling on the leaf morphology and structure of 10 species in Gramineae. Acta Botanica Sinica, 1997, 39(9): 859-866. (in Chinese)

[13]韩梅, 吉成均, 左闻韵, 贺金生. CO2浓度和温度升高对11种植物叶片解剖特征的影响. 生态学报, 2006, 26(2): 326-333.

Han M, Ji C J, Zuo W Y, He J S. Interactive effects of elevated CO2 and temperature on the leaf anatomical characteristics of eleven species. Acta Ecologica Sinica, 2006, 26(2): 326-333. (in Chinese)

[14]Rogers H H, Thomas J F, Bingham G E. Response of agronomic and forest species to elevated atmospheric carbon dioxide. Science, 1983, 220: 428-429.

[15]Gaudillere J P, Mousseau M. Short term effect of CO2 enrichment on leaf development and gas exchange of young poplars (Populus euramericana cv. I 214 ). Acta Oecologia: Oecologia Plantarum, 1989, 10(1): 95-105.

[16]张广珠, 胡春祥, 苏建伟, 戈峰. 麦长管蚜在高CO2浓度下生长的抗性与感性小麦品种上的取食行为. 生态学报, 2009, 29(9): 4745-4752.

Zhang G Z, Hu C X, Su J W, Ge F. Electrical penetration graph (EPG) of feeding behavior of Sitobion avenae (Fab.) on resistant and susceptible wheat plants grown under elevated CO2 concentration. Acta Ecologica Sinica, 2009, 29(9): 4745-4752. (in Chinese)

[17]Schoonhoven L M, van Loon J J A, Dicke M. Insect-Plant Biology. USA: Oxford University Press, 2006. 

[18]Tjallingii W F, Esch T H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology, 1993, 18: 317-328.

[19]Calatayud P A, Seligmann C D, Polania M A, Bellotti A C. Influence of parasitism by encyrtid parasitoids on the feeding behaviour of the cassava mealybug Phenacoccus harreni. Entomologia Experimentalis et Applicata, 2001, 98(3): 271-278.

[20]Almeida R P P, Backus E A. Stylet penetration behaviors of Graphocephala atropunctata (Signoret) (Hemiptera, Cicadellidae): EPG waveform characterization and quantification. Annals of the Entomological Society of America, 2004, 97(4): 838-851.

[21]Backus E A, Habibi J, Yan F, Ellersieck M. Stylet penetration by adult Homalodisca coagulata on grape: electrical penetration graph waveform characterization, tissue correlation, and possible implications for transmission of Xylella fastidiosa. Annals of the Entomological Society of America, 2005, 98(6): 787-813.

[22]胡想顺, 赵惠燕, 胡祖庆, 李东鸿, 张宇红. 麦长管蚜在3个小  麦品种上取食行为的EPG比较. 中国农业科学, 2008, 41(7): 1989-1994.

Hu X S, Zhao H Y, Hu Z Q, Li D H, Zhang Y H. EPG comparison of Sitobion avenae (Fab.) feeding behaviors on three wheat varieties. Scientia Agricultura Sinica, 2008, 41(7): 1989-1994. (in Chinese)

[23]Sandanayaka W R M, Jia Y, Charles J G. EPG technique as a tool to reveal host plant acceptance by xylem sap-feeding insects. Journal of Applied Entomology, 2012, 137: 519-529.

[24]Khan Z R, Saxena R C. Electronically recorded waveforms associated with the feeding behavior of Sogatella furcifera (Homoptera: Delphacidae) on susceptible and resistant rice varieties. Journal of Economic Entomology, 1984, 77(6): 1479-1482.

[25]Velusamy R, Heinriches E A. Electronic monitoring of feeding behavior of Nilaparvata lugens (Homoptera: Delphacidae) on resistant and susceptible rice cultivars. Environmental Entomology, 1986, 15(3): 678-682.

[26]Khan Z R, Saxena R C. Probing behavior of three biotypes of Nilaparvata lugens (Homoptera: Delphacidae) on different resistant and susceptible rice varieties. Journal of Economic Entomology, 1988, 81(5): 1338-1345.

[27]Kimmins F M. Electrical penetration graphs from Nilaparvata lugens on resistant and susceptible rice varieties. Entomologia Experimentalis et Applicata, 1989, 50: 69-79.

[28]Hattori M. Probing behavior of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) on a non-host barnyard grass, and resistant and susceptible varieties of rice. Applied Entomology and Zoology, 2001, 36(1): 83-89.

[29]潘建红, 陈峰, 何佳春, 赖风香, 傅强. 不同致害性褐飞虱种群刺吸电位图 (EPG) 的比较. 中国水稻科学, 2011, 25(1): 86-90.

Pan J H, Chen F, He J C, Lai F X, Fu Q. Comparison on electrical penetration graph (EPG) of two populations of Nilaparvata lugens with different virulence. Chinese Journal of Rice Science, 2011, 25(1): 86-90. (in Chinese)

[30]Seo B Y, Kwon Y H, Jung J K, Kim G H. Electrical penetration graphic waveforms in relation to the actual positions of the stylet tips of Nilaparvata lugens in rice tissue. Journal of Asia-Pacific Entomology, 2009, 12(2): 89-95.

[31]R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0, URL: http://www.R-project.org/.
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[5] HE YunChuan,WANG XinPu,HONG Bo,ZHANG TingTing,ZHOU XueFei,JIA YanXia. Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults [J]. Scientia Agricultura Sinica, 2021, 54(2): 324-333.
[6] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[7] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[8] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[9] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[10] SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture [J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484.
[11] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
[12] JING LiQuan, HU ShaoWu, MU HaiRong, WANG YunXia, YANG LianXin. Change of Atmospheric Environment Leads to Deterioration of Rice Quality [J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475.
[13] LIU Wei, LI YiJun, Lü HouQuan. Responses of Heading to Flowering to Maturity of Early Rice to Climate Change and Different Transplant Periods [J]. Scientia Agricultura Sinica, 2018, 51(1): 49-59.
[14] ZHANG Ting, SHI ZhiGang, WANG GenPing, GAO Xiang, XIA XueYan, YANG WeiHong, ZHANG XiRui, TIAN XiaoJian, CHENG RuHong, DIAO XianMin. The Alterations of Foxtail Millet Breeding in North China Summer-Sowing Region from 2001 to 2015 [J]. Scientia Agricultura Sinica, 2017, 50(23): 4475-4485.
[15] SUN XinSu, LONG ZhiWei, SONG GuangPeng, CHEN ChangQing. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain [J]. Scientia Agricultura Sinica, 2017, 50(13): 2476-2487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!