Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (20): 4301-4309.doi: 10.3864/j.issn.0578-1752.2013.20.013

• HORTICULTURE • Previous Articles     Next Articles

Construction of the Suppression Subtractive Hybridization Library and Analysis of Related Genes of Spur-Type Apple (Malus domestica Borkh.)

 SONG  Yang-12, WU  Shu-Jing-1, ZHANG  Yan-Min-1, CHEN  Xue-Sen-1   

  1. 1.College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
    2.Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
  • Received:2012-12-13 Online:2013-10-15 Published:2013-07-25

Abstract: 【Objective】The aim of this experiment is to explore genes related to spur type shoots of apple and to try to understand the mechanism of sport for breeding new spur type variety.【Method】A forward and reverse suppression subtractive hybridization library were constructed using the spur type shoots from sport and the standard shoots. Identification of the inserted cDNA fragments in subtracted library was done using real-time PCR.【Result】A total of 291 positive clones were obtained and the size of the inserts was 300 to 600 bp. By means of BLAST comparison of GenBank, 126 ESTs were found to share considerable homology with known genes while the rest 165 ESTs had no homology with known genes. The putative function of these genes was involved in metabolism, transcription, stress response, transport, photosynthesis, and signal transduction. The ESTs were significantly differently expressed between the spur type sport and the standard shoots. 【Conclusion】 Some genes related to shoot internode length of spur type apple were obtained through construction of the forward and reverse suppression subtractive hybridization library. The research results suggested that the genes play an important role during the shoots elongation of spur type apple.

Key words: apple , spur type , suppression subtractive hybridization(SSH) , expressed sequence tags , real-time PCR

[1]Looney N E, Lane W D. Spur-type growth mutants of Micntosh apple: a review of their gentics, physiology and field performance. Acta Horticulturae, 1984, 146: 31-46.

[2]牛自勉, 王贤萍, 李全, 陈宏. 短枝红富士苹果结果特性的研究. 中国农业科学, 1996, 29 (2): 45-51.

Niu Z M, Wang X P, Li Q, Chen H. A study on bearing habit in various spur-type strains of Red Fuji apple. Scientia Agricultura Sinica, 1996, 29(2): 45-51. (in Chinese)

[3]张玉萍, 牛自勉, 李全. 苹果短枝型品种脱落酸含量与树体生长的研究. 山西农业大学学报, 1994, 14(2): 138-140.

Zhang Y P, Niu Z M, Li Q. A study on the correlation between ABA content and growth and development of spur-type variety of apple. Journal of Shanxi Agricultural University, 1994, 14(2): 138-140. (in Chinese)

[4]杨佩芳,郝燕燕,田彩芳. 苹果短枝型品种导管分子的解剖学研究. 园艺学报,2000, 27 (1): 52-54.

Yang P F, Hao Y Y, Tian C F. Studies on the anatomy the vessel member of spur-type apple. Acta Horticulturae Sinica, 2000, 27(1): 52-54. (in Chinese)

[5]祝军,王涛,赵玉军,张文,李晨光,周爱琴. 应用AFLP分子标记鉴定苹果品种. 园艺学报,2000,27(2): 102-106.

Zhu J, Wang T, Zhao Y J, Zhang W, Li C G, Zhou A Q. Identification of apple varieties with AFLP molecular marker. Acta Horticulturae Sinica, 2000, 27(2): 102-106. (in Chinese)

[6]张今今,王跃进,李荣旗. 苹果短枝型性状的RAPD研究. 农业生物技术学报,2000,8: 285-288.

Zhang J J, Wang Y J, Li R Q. Study on apple spur type sports using RAPD. Journal of Agricultural Biotechnology, 2000, 8(3): 285-288. (in Chinese)

[7]Ban Y, Honda C, Bessho H, Pang X M, Moriguchi T. Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase. Journal of Experimental Botany, 2007, 58: 1825-1834.

[8]杨明,王日葵,周炼,葛文东,焦雁翔. 应用抑制性差减杂交技术分离椪柑枯水相关基因. 中国农业科学,2012, 45(5): 917-925.

Yang M, Wang R K, Zhou L, Ge W D, Jiao Y X. Molecular cloning of waterless-related genes in Ponkan Mandarin using suppression subtractive hybridization. Scientia Agricultura Sinica, 2012, 45(5): 917-925.

[9]李玲,王慧,谭钺,王宇,陈修德,李冬梅,高东升. 桃花芽休眠解除SSH文库构建及相关基因表达分析. 园艺学报,2011, 38(12): 2273-2280.

Li L, Wang H, Tan Y, Wang Y, Chen X D, Li D M, Gao D S. Construction of the suppression subtractive hybridization library and analysis of related genes of floral buds in Prunus persica during dormancy-releasing. Acta Horticulturae Sinica, 2011, 38(12): 2273-2280.

[10]Degenhart J, Al-Masri A N, Kürkcüoglu S, Szankowski I, Gau A E. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetic Genomics, 2005, 273: 326-335.

[11]Kürkcüoglu S, Degenhardt J, Lensing J, Al-Masri A N, Gau A E. Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. Journal of Experimental Botany, 2007, 58(3): 733-741.

[12]Bowen J K, Mesarich C H, Rees-George J, Cui W, Fitzgerald A, Win J, Plummer K M, Templeton M D. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Molecular Plant Pathology, 2009, 10(3): 431-448.

[13]Cheng S, Puryear J, Cairney J. A simple and efficient method for isolation RNA from pine trees. Plant Molecular Biology Reporter, 1993, 11: 113-116.

[14]Aguilar-Hernández H S, Santos L, León-Galván F, Barrera-Pacheco  A, Espitia-Rangel E, León-Rodríguez A D, Guecara-González R G, Rosa A P B. Identification of calcium stress induced genes in amaranth leaves through suppression subtractive hybridization. Journal of Plant Physiology, 2011, 168: 2102-2109.

[15]Miao H X, Qin Y H, Silva J A T, Ye Z X, Hu G B. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulate by suppression subtractive hybridization. Molecular Biology Reporter, 2013, 40: 159-169.

[16]Peng T, Saito T, Honda C, Ban Y, Kondo S, Liu J H, Hatsuyama Y, Moriguchi T. Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiologia Plantarum, 2012, doi: 10.1111/j.1399-3054.2012.12002.x.

[17]Al-Shanfari A B, Abdullah S N A, Saud H M, Omidvar V, Napis S. Differential gene expression identified by suppression subtractive hybridization during late repening of fruit in oil palm (Elaeis guineensis Jace.). Plant Molecular Biology Reporter, 2012, 30: 768-779.

[18]Xu H N, He X Z, Wang K, Chen L M, Li K Z. Identification of early nitrate stress response genes in Spinach roots by suppression subtractive hybridization. Plant Molecular Biology Reporter, 2012, 30: 633-642.

[19]Wegenhart B, Tan L, Held M, Kieliszewski M, Chen L. Aggregate structure of hydroxyproine-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes. Nanoscale Research Letters, 2006, 1: 154-159.

[20]Keller B, Lamb C J. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Development, 1989, 3: 1639-1646.

[21]Cooper J B, Varner J E. Cross-linking of soluble extensin in isolated cell walls. Plant Physiology, 1984, 76: 414-417.

[22]Lieberman M, Mapson L W. Genesis and biogenesis of ethylene. Nature, 1964, 204: 343-345.

[23]B?rstenbinder K, Rzewuski G, Witrz M, Hell R, Sauter M. The role of methionine recycling for ethylene synthesis in Arabidopsis. The Plant Journal, 2007, 49: 238-249.

[24]Lyi S M, Zhou X, Kochian L V, Li L. Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochemistry, 2007, 68: 1112-1119.

[25]Henson I E. Inhibition of abscisic acid accumulation in seedling shoots of pearl millet (Pennisetum americanum Leeke) following induction of chlorosis by norflurazon. Zeitschrift für Pflanzenphysiologie, 1984, 114: 35-43.

[26]North H M, Almeida A D, Boutin J P, Frey A, To A, Botran L, Sotta B, Marion-poll A. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. The Plant Journal, 2007, 50: 810-824.

[27]Smith J D, McDaniel M, Lively S. Regulation of embryo growth by abscisic acid in vitro. Maize Geneties Cooperative Newsletter, 1978, 52: 107-108.

[28]Dong A W, Zhu Y, Yu Y, Cao K. M, Sun C R, Shen W H. Regulation of biosynthesis and intracellular localization of rice and tobacco homologues of nucleosome assembly protein 1. Planta, 2003, 216: 561-570.

[29]Liu Z Q, Gao J, Dong A W, Shen W H. A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant. Molecular Plant, 2009, 2: 688-699.

[30]Laity J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 2001, 11: 39-46.

[31]Kodaira K S, Qin F, Tran L S P, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K,  Yamaguchi-Shinozake K. Arabidopsis C2H2 zinc- finger protein AZF1 and AZF2 negatively regulate ABA-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiology Preview, 2011, 157(2): 742-756.

[32]Dong C H, Xia G X, Hong Y, Ramachandran S, Kost B, Chua N H. ADF Proteins are involved in the control of flowering and regulated F-actin organization, cell expansion, and organ growth in Arabidopsis. The Plant Cell, 2001, 12: 1333-1346.

[33]Jiang C J, Weed A G, Hussey P J. The maize actin-depolymerizing factor, ZmADF, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. The Plant Journal, 1997, 12(5): 1035-1043.

[34]Allwood E G, Anthony R G, Smertenko A P, Reichelt S, Drobak B K, Doonan J H, Weeds A G,  Hussey P J. Regulation of the pollen-specific actin-depolymerizing factor LIADF1. The Plant Cell, 2002, 14: 2915-2927. 

[35]Chen R, Masson P H. Auxin transport and recycling of PIN proteins in plants. Plant Cell Monogr, 2006, 1: 139-157.

[36]Gebbie L K, Burn J E, Hocart C H, Williamson R E. Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression. Journal of Experimental Botany, 2005, 56(414): 1079-1091.

[37]Craig K L, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progress in Biophysics and Molecular Biology, 1999, 72(3): 299-328.

[38]McGinnis K M, Thomas S G, Soule J D, Strader L C, Zale J M, Sun T P, Steber C M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell, 2003, 15(5): 1120-1130.

[39]Dill A, Thomas S G, Hu J, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEY1 target gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell, 2004, 16(6): 1392-1405.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[9] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[10] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[11] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[14] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[15] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!