Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (20): 4210-4221.doi: 10.3864/j.issn.0578-1752.2013.20.004

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding Introgression Potato Lines with Resistance to Cold-Induced Sweetening and Screening for Chip Processing Lines

 ZHAO  Qing-Xia-12, LIN  Bi-Bo-12, ZHANG  Xin-12, LI  Hui-Jun-12, LIU  Yue-Shan-2, XU  Gang-12, CHENG  Li-Xiang-12, WANG  Yu-Ping-2, ZHANG  Jun-Lian-2, WANG  Di-2, ZHANG  Feng-12   

  1. 1.College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070;
    2. College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070)
  • Received:2013-04-07 Online:2013-10-15 Published:2013-07-03

Abstract: 【Objective】The potato introgression lines were bred from hybridization and continuous backcrossing between the primitive and wild varieties with 2n gametes species and the main local cultivated potato varieties, so as to select the chip processing lines and the best introgression parents. 【Method】 The progenies were screened by their field agronomic traits three years at different ecological areas. The content of reducing sugars, free amino acids, acrylamide and activity of acid invertase were analyzed after storage at room and low temperatures and correlation analysis among chip colors and these data were conducted. 【Result】The introgression lines from S. phureja and S. chacoense had higher yield and dry matter content. The introgression lines showed the significantly different ability to accumulate reducing sugars through low temperature storage (4℃). Introgression lines 0712-33, 0722-90, 0732-43 and 0742-66 had low levels of reducing sugars, acrylamide content and acceptable chipping colors. 【Conclusion】The transfer of primitive and wild species’ processing traits into local cultivars by hybridization and continuous backcrossing is an effective potato breeding method and that the germplasm resources S. phureja and S. chacoense are suitable for improving the processing traits of local varieties.

Key words: hybridization , backcrossing , introgression breeding , primitive varieties , chip quality

[1]Zyzak D V, Sanders R A, Stojanovic M, Tallmadge D H, Eberhart B L, Ewald D K, Gruber D C, Morsch T R, Strothers M A, Rizzi G P, Villagran M D. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 2003, 51(16): 4782-4787.

[2]Becalski A, Lau B P Y, Lewis D, Seaman S W, Hayward S, Sahagian M, Ramesh M, Leclerc Y. Acrylamide in french fries:  Influence of free amino acids and sugars. Journal of Agricultural and Food Chemistry, 2004, 52(12): 3801-3806.

[3]Amrein T M, Bachmann S, Noti A, Biedermann M, Barbosa M F, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amadó R. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5556-5560.

[4]Bradshaw J, Bryan G, Ramsay G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research, 2006, 49(1): 49-65.

[5]Hamernik A J, Hanneman R E, Jansky S H. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Science, 2009, 49(2): 529-542.

[6]Hayes R J, Thill C A. Introgression of cold (4℃) chipping from 2× (2 Endosperm Balance Number) potato species into 4× (4EBN) cultivated potato using sexual polyploidization. American Journal of Potato Research, 2002, 79(6): 421-431.

[7]Hayes R J, Thill C A. Co-current introgression of economically important traits in a potato-breeding program. American Journal of Potato Research, 2002, 79(3): 173-181.

[8]Menéndez C M, Ritter E, Schäfer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C. Cold sweetening in diploid potato: Mapping quantitative trait loci and candidate genes. Genetics, 2002, 162(3): 1423-1434.

[9]Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 1994, 79(3): 175-179.

[10]Naess S K, Bradeen J M, Wielgus S M, Haberlach G T, McGrath J M, Helgeson J P. Analysis of the introgression of Solanum bulbocastanum DNA into potato breeding lines. Molecular Genetics and Genomics, 2001, 265(4): 694-704.

[11]Weber B, Hamernik A, Jansky S. Hybridization barriers between diploid Solanum tuberosum and wild Solanum raphanifolium. Genetic Resources and Crop Evolution, 2012, 59(7): 1287-1293.

[12]盛万民, 王凤义, 宁海龙, 石瑛, 邸宏, 魏峭嵘. 马铃薯野生种 S. demissum 与普通栽培品种 Katahdin 回交一代材料主要产量性状细胞遗传效应分析. 东北农业大学学报, 2009, 40(9): 10-15.

Sheng W M, Wang F Y, Ning H L, Shi Y, Di H, Wei Q R. Genetic effects of yield traits on breeding materials from the first back-cross generation of S. demissum and cultivars. Journal of Northeast Agriculture University, 2009, 40(9): 10-15. (in Chinese)

[13]Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Bioscience, Biotechnology, and Biochemistry, 2005, 69(7): 1232-1238.

[14]Lee Y P, Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry, 1966, 14(1): 71-77.

[15]Takahata Y, Noda T, Sato T. Relationship between acid invertase activity and hexose content in sweet potato storage roots. Journal of Agricultural and Food Chemistry, 1996, 44(8): 2063-2066.

[16]Gokmen V, Senyuva H Z, Acar J, Sario?lu K. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. Journal of Chromatography A, 2005, 1088(1/2): 193-199.

[17]McCann L C, Bethke P C, Simon P W. Extensive variation in fried chip color and tuber composition in cold-stored tubers of wild potato (Solanum) germplasm. Journal of Agricultural and Food Chemistry, 2010, 58(4): 2368-2376.

[18]Bhaskar P B, Wu L, Busse J S, Whitty B R, Hamernik A J, Jansky S H, Buell C R, Bethke P C, Jiang J M. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology, 2010, 154(2): 939-948.

[19]Struik P C, Wiersema S G. Seed potato technology. Wageningen Academic Pub, 1999.

[20]Jansky S H, Peloquin S J. Advantages of wild diploid Solanum species over cultivated diploid relatives in potato breeding programs. Genetic Resources and Crop Evolution, 2006, 53(4): 669-674.

[21]Bryan G, McLean K, Bradshaw J, De Jong S, Phillips M, Castelli L, Waugh R. Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theoretical and Applied Genetics, 2002, 105(1): 68-77.

[22]Colon L, Budding D. Resistance to late blight (Phytophthora infestans) in ten wild solanum species. Euphytica, 1988, 39: 77-86.

[23]Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 2007, 156(1): 1-13.

[24]Carputo D, Barone A, Frusciante L. 2n gametes in the potato: Essential ingredients for breeding and germplasm transfer. Theoretical and Applied Genetics, 2000, 101(5/6): 805-813.

[25]Kumar D, Singh B, Kumar P. An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology, 2005, 145(3): 247-256.

[26]Douches D S, Freyre R. Identification of genetic factors influencing chip color in diploid potato (Solanum spp.). American Journal of Potato Research, 1994, 71(9): 581-590.

[27]Hamlet C G, Sadd P A, Liang L. Correlations between the amounts of free asparagine and saccharides present in commercial cereal flours in the United Kingdom and the generation of acrylamide during cooking. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6145-6153.
[1] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[2] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[3] Dan HE,DongBo XIE,JiaoRui ZHANG,SongLin HE,ChaoMei LI,YunBing ZHENG,Zheng WANG,YiPing LIU,Yan LI,JiuXing LU. Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome [J]. Scientia Agricultura Sinica, 2020, 53(6): 1234-1246.
[4] YIN MiQi, ZHANG ShuangXi, FAN ChunKun, WANG KunYang, WANG Jing, WANG Ke, DU LiPu, YE XingGuo. Effects of Different Chemicals and Treatment Methods on Chromosome Doubling of Haploid Wheat Plants [J]. Scientia Agricultura Sinica, 2018, 51(5): 811-820.
[5] XU Rui, HU BaiShi, TIAN YanLi, HUANG YanNing, XIE Jin, CAO Liang, PENG SiWen, ZHU XiaoQi. Development of Padlock Probe Combined with Dot-Blot Hybridization Based Methods for Detection of Bacterial Spot of Melon Leaves [J]. Scientia Agricultura Sinica, 2017, 50(4): 679-688.
[6] ZHANG RunQi, FU KaiYong, LI Chao, ZU SaiChao, LI ChunYan, LI Cheng. Changes of Micro-Structural Characteristics of Starch Granules and the Mechanisms Under Different Phosphorus Application Rates in Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2017, 50(22): 4235-4246.
[7] LI Xin, GU XiaoChuan, LONG HaiBo, PENG Huan, HUANG WenKun, PENG DeLiang. Identification and Expression Analysis of a New Pectate Lyase Gene Ha-pel-1 from Heterodera avenae [J]. Scientia Agricultura Sinica, 2017, 50(19): 3723-3732.
[8] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
[9] WANG Kun-yang, ZHANG Wei, ZHANG Shuang-xi, LIU Hong-wei, WANG Ke, DU Li-pu, LIN Zhi-shan, YE Xing-guo. Effect of Chemical Hybridization Agent SQ-1 and Arabinogalactan Proteins on the Embryos Obtaining in Wheat Intervarietal and Wild Crosses [J]. Scientia Agricultura Sinica, 2016, 49(24): 4824-4832.
[10] ZHANG Yu-jie, ZHAO Yan, XU Lu, ZHANG Qian-yi, CHEN Kai, SUN Yong-fang, ZOU Xing-qi, ZHU Yuan-yuan, ZHAO Qi-zu, NING Yi-bao, WANG Qin. Study of Location and Distribution of Classical Swine Fever Virus RNA in PK15 Cells by Visualization in Situ Hybridization Technology [J]. Scientia Agricultura Sinica, 2016, 49(12): 2397-2407.
[11] LIU Chang-you, FAN Bao-jie, CAO Zhi-min, SU Qiu-zhu, WANG Yan, ZHANG Zhi-xiao, CHENG Xu-zhen, TIAN Jing. Interspecific Hybridization Among Vigna Species [J]. Scientia Agricultura Sinica, 2015, 48(3): 426-435.
[12] GUAN Wei, ZHANG Yun-xia, YANG Shu-qiong, CHEN Jin-feng, LOU Qun-feng. Creation and Chromosome FISH Identification of Cucumber Materials with Different Ploidies [J]. Scientia Agricultura Sinica, 2014, 47(17): 3513-3522.
[13] YU Xiao-Yan-1, XING Shu-Tang-2, ZHAO Lan-Yong-1. Analysis on the Barriers of Interspecific Hybridization Between Rosa rugosa and Rosa hybrid [J]. Scientia Agricultura Sinica, 2014, 47(15): 3112-3120.
[14] WANG San-Hong, ZHANG Zhen, CAI Bin-Hua, QU Shen-Chun. Establishment and Application of Double Color DNA Fiber Fluorescence in situ Hybridization Using Bacterium Artificial Chromosomes in Apple [J]. Scientia Agricultura Sinica, 2014, 47(11): 2205-2213.
[15] HE Liang-Qiong, XIONG Fa-Qian, ZHONG Rui-Chun, HAN Zhu-Qiang, LI Zhong, TANG Xiu-Mei, JIANG Jing, TANG Rong-Hua, HE Xin-Hua. Study on Genome Variations by Using SCoT Markers During Allopolyploidization of the Cultivated Peanut ×A. chacoensis [J]. Scientia Agricultura Sinica, 2013, 46(8): 1555-1563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!