Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (19): 3723-3732.doi: 10.3864/j.issn.0578-1752.2017.19.009

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Expression Analysis of a New Pectate Lyase Gene Ha-pel-1 from Heterodera avenae

LI Xin1, GU XiaoChuan1,2, LONG HaiBo3, PENG Huan1, HUANG WenKun1, PENG DeLiang1   

  1. 1Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193; 2Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, Hainan; 3Key Laboratory of Pests Comprehensive Governance for Tropical Crops, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
  • Received:2017-03-30 Online:2017-10-01 Published:2017-10-01

Abstract: 【Objective】The cereal cyst nematode (Heterodera avenae) is one of the important plant parasitic nematodes which seriously threatened cereal crops and caused huge economic losses to agricultural production in China. However, its pathogenic mechanism and effective prevention and control methods still need to be further studied. The objective of this study is to provide a theoretical basis for further study on the gene function of Ha-pel-1 and its interaction with host plants, and to give new ideas for the control strategies of cereal cyst nematode based on the cloning and expression analysis of a new pectate lyase gene Ha-pel-1 from H. avenae.【Method】A novel pectate lyase gene Ha-pel-1 was cloned from H. avenae using homology cloning combined with RACE technology, and its nucleotide sequence and amino acid sequence were analyzed by related bioinformatics softwares and online tools, such as DNAMAN, Clustal, SignalP 4.0 Server and GSDS. a phylogenetic tree was also constructed using MEGA 5.0. the tissue localization and developmental expression characteristics of Ha-pel-1 were analyzed by in situ hybridization and semi-quantitative PCR method. 【Result】 A novel pectate lyase gene (Ha-pel-1, GenBank accession number GQ998895) was cloned successfully from H. avenae. Ha-pel-1 was 1 717 bp in length which contained a 1 563 bp open reading frame (ORF) encoding a protein of 521 amino acid residues. The molecular weight of Ha-pel-1 encoding protein was 57.5 kD and isoelectric point was 8.52. The full length of genomic sequence of Ha-pel-1 was amplified from the nematode genome DNA which contains 7 199 bp. Gene structure analysis showed that the Ha-pel-1 genome contains 14 exons and 13 introns, except for the 3rd intron splice sites are GC-AG, the other 12 introns are in line with the rules of the eukaryotic gene splicing site GT-AG. The results of homologous comparison showed that the C-terminal sequence of the putative Ha-PEL-1 had a 67% identity and a similarity of 83% with that of soybean cyst nematode HG-PEL-1 and beet cyst nematode HS-PEL-1. In addition, after the end of N-terminal signal peptide, the putative Ha-PEL-1 had a sequence of 254 amino acid residues more than other reported plant parasitic nematodes pectate lyases. In this sequence, 184 amino acid residues closing to the N-terminal had no similarity with protein database, while 70 amino acid residues (Lys205-Glu274) closing to the C-terminal had an identity of 32% and a similarity of 47% with the methyltransferase domain of Wesselsbron virus NS5 (Registration No. 3ELD). The amino acid sequence analysis revealed that the predicted protein contained a signal peptide of 20 amino acid residues, as well as 4 highly conserved regions and several conserved cysteine residues characteristic of class Ⅲ pectate lyases (PL3). A phylogenetic analysis revealed that Ha-pel-1 and other nematodes pectate lyase genes are gathered in a large branch with bacterial and fungal sources PEL. In situ hybridization analyses showed that the transcripts of Ha-pel-1 were mainly expressed in the two subventral gland cells of H. avenae. a semi-quantitative RT-PCR analysis confirmed that its transcriptions were highly expressed at the pre-parasitic and parasitic 2nd stage juveniles.【Conclusion】A new pectate lyase gene Ha-pel-1 from H. avenae, closely related to the infection and parasitic process of cereal cyst nematode, was found and analyzed.

Key words: Heterodera avenae, pectate lyase, gene cloning, in situ hybridization, developmental expression analysis

[1]    Meagher J W. World dissemination of the cereal-cyst nematode (Heterodera avenae) and its potential as a pathogen of wheat. Journal of Nematology, 1977, 9(1): 9-15.
[2]    Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs. Cereal cyst nematodes: status, research and outlook//Proceedings of the First Workshop of the International Cereal Cyst Nematode Initiative. Antalya, Turkey, 2009: 3-10.
[3]    陈品三, 王明祖, 彭德良. 我国小麦禾谷孢囊线虫(Heterodera avenae Wollenweber)的发现与鉴定初报. 中国农业科学, 1991, 24(5): 89.
Chen P S, Wang M Z, Peng D L. Preliminary report of identification on cereal cyst nematode of wheat in china. Scientia Agricultura Sinica, 1991, 24(5): 89. (in chinese)
[4]    Cui J K, Huang W K, Peng H, Liu S M, Wang G F, Kong L A, Peng D L. A new pathotype characterization of Daxing and Huangyuan populations of cereal cyst nematode (Heterodera avenae) in China. Journal of Integrative Agriculture, 2015, 14(4): 724-731.
[5]    Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. Cereal cyst nematodes: status, research and outlook//Proceedings of the First Workshop of the International Cereal Cyst Nematode Initiative. Antalya, Turkey, 2009: 29-34.
[6]    Bohlmann H, Sobczak M. The plant cell wall in the feeding sites of cyst nematodes. Frontiers in Plant Science, 2014, 5(1): 89.
[7]    Popeijus H, Overmars H, Jones J, Blok V, Goverse A, Helder J, Schots A, Bakker J, Smant G. Degradation of plant cell walls by a nematode. Nature, 2000, 406(6791): 36-37.
[8]    De Boer J M, McDermott J P, Davis E L, Hussey R S, Popeijus H, Smant G, Baum T J. Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of Heterodera glycines. Journal of Nematology, 2002, 34(1): 9-11.
[9]    彭焕, 彭德良, 黄文坤, 贺文婷, 胡先奇. 大豆孢囊线虫果胶酸裂解酶基因Hg-pel-5的克隆与分析. 中国农业科学, 2012, 45(5): 854-866.
Peng H, Peng D L, Huang W K, He W T, Hu X Q. Molecular cloning and analysis of a novel pectate lyase gene Hg-pel-5 from soybean cyst nematode. Scientia Agricultura Sinica, 2012, 45(5): 854-866. (in chinese)
[10]   Peng H, Cui J K, Long H B, Huang W K, Kong L A, Liu S M, He W T, Hu X Q, Peng D L. Novel pectate lyase genes of Heterodera glycines play key roles in the early stage of parasitism. Plos One, 2016, 11(3): e0149959.
[11]   Vanholme B, Van Thuyne W, Vanhouteghem K, De Meutter J, Cannoot B, Gheysen G. Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii. Molecular Plant Pathology, 2007, 8(3): 267-278.
[12]   Kudla U, Milac A L, Qin L, Overmars H, Roze E, Holterman M, Petrescu A J, Goverse A, Bakker J, Helder J, Smant G. Structural and functional characterization of a novel, host penetration-related pectate lyase from the potato cyst nematode Globodera rostochiensis. Molecular Plant Pathology, 2007, 8(3): 293-305.
[13]   Doyle E A, Lambert K N. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Molecular Plant-Microbe Interactions, 2002, 15(6): 549-556.
[14]   Huang G, Dong R, Allen R, Davis E L, Baum T J, Hussey R S. Developmental expression and molecular analysis of two Meloidogyne incognita pectate lyase genes. International Journal for Parasitology, 2005, 35: 685-692.
[15]   Kikuchi T, Shibuya H, Aikawa T, Jones J T. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Molecular Plant-Microbe Interactions, 2006, 19(3): 280-287.
[16]   Karim N, Jones J T, Okada H, Kikuchi T. Analysis of expressed sequence tags and identification of genes encoding cell- wall-degrading enzymes from the fungivorous nematode Aphelenchus avenae. BMC Genomics, 2009, 10: 525.
[17]   Kikuchi T, Cotton J A, Dalzell J J, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai I J, Assefa S A, Cock P J A, Otto T D, Hunt M, Reid A J, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson M C, Miwa J, Maule A G, Sahashi N, Jones J T, Berriman M. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathogens, 2011, 7(9): e1002219.
[18]   Opperman C H, Bird D M, Williamsond V M, Rokhsar D S, Burke M, Cohn J, Cromera J, Diener S, Gajan J, Graham S, Houfek T D, Liu Q L, Mitros T , Schaff J, Schaffer R, Scholl E, Sosinski B R, Thomas V P, Windham E. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 14802-14807.
[19]   Abad P, Gouzy J, Aury J M, Castagnone-Sereno P, Danchin E G J, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V C, Caillaud M C, Coutinho P M, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone J V, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier T R, Markov G V, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, Van Ghelder C, Veronico P, Baum T J, Blaxter M, Bleve-Zacheo T, Davis E L, Ewbank J J, Favery B, Grenier E, Henrissat B, Jones J T, Laudet V, Maule A G, Quesneville H, Rosso M N, Schiex T, Smant G, Weissenbach J, Wincker P. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 2008, 26(8): 909-915.
[20]   Bakhetia M, Urwin P E, Atkinson H J. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Molecular Plant-Microbe Interactions, 2007, 20(3): 306-312.
[21]   Long H B, Peng H, Huang W K, Wang G F, Gao B L, Moens M, Peng D L. Identification and molecular characterization of a new β-1,4-endoglucanase gene (Ha-eng-1a) in the cereal cyst nematode Heterodera avenae. European Journal of Plant Pathology, 2012, 134(2): 391-400.
[22]   Long H B, Peng D L, Huang W K, Peng H, Wang G F. Molecular characterization and functional analysis of two new β-1,4-endoglucanase genes (Ha-eng-2, Ha-eng-3) from the cereal cyst nematode Heterodera avenae. Plant Pathology, 2013, 62(4): 953-960.
[23]   Long H B, Peng D L, Huang W K, Liu Y K, Peng H. Identification of a putative expansin gene expressed in the subventral glands of the cereal cyst nematode Heterodera avenae. Nematology, 2012, 14(5): 571-577.
[24]   Liu J, Peng H, Cui J K, Huang W K, Kong L A, Clarke L J H, Jian H, Wang G L, Peng D L. Molecular characterization of a novel effector expansin-like protein from Heterodera avenae that induces cell death in Nicotiana benthamiana. Scientific Reports, 2016, 6: 35677.
[25]   顾晓川, 彭德良, 彭焕, 龙海波, 王高峰, 黄文坤, 何月秋. 禾谷孢囊线虫(Heterodera avenae)纤维素结合蛋白基因(Ha-cbp-1)的克隆和序列分析. 植物病理学报, 2011, 41(3): 240-246.
Gu X C, Peng D L, Peng H, Long H B, Wang G F, Huang W K, He Y Q. Molecular cloning and sequencing of cellulose binding protein gene (Ha-cbp-1) from the cereal cyst nematode (Heterodera avenae). Acta Phytopathologica Sinica, 2011, 41(3): 240-246. (in chinese)
[26]   Liu Y K, Huang W K, Long H B, Peng H, He W T, Peng D L. Molecular characterization and functional analysis of a new acid phosphatase gene (Ha-acp1) from Heterodera avenae. Journal of Integrative Agriculture, 2014, 13(6): 1303-1310.
[27]   亓晓莉, 彭德良, 彭焕, 龙海波, 黄文坤, 贺文婷. 基于SCAR标记的小麦禾谷孢囊线虫快速分子检测技术. 中国农业科学, 2012, 45(21): 4388-4395.
Qi X L, Peng D L, Peng H, Long H B, Huang W K, He W T. Rapid molecular diagnosis based on SCAR marker system for cereal cyst nematode. Scientia Agricultura Sinica, 2012, 45(21): 4388-4395. (in chinese)
[28]   彭焕, 彭德良, 黄文坤. 甘薯茎线虫β-1,4内切葡聚糖酶基因 (Dd-eng-1b) cDNA全长的克隆与序列分析. 农业生物技术学报, 2009, 17(6): 1035-1041.
Peng H, Peng D L, Huang W K. Molecular cloning and sequence analysis of a new β-1, 4-endoglucanase gene (Dd-eng-1b) from plant-parasitic nematode Ditylenchus destructor on sweetpotato in China. Chinese Journal of Agricultural Biotechnology, 2009, 17(6): 1035-1041. (in Chinese)
[29]   Petersen T N, Brunak S, Von H G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10): 785-786.
[30]   郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统. 遗传, 2007, 29(8): 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29(8): 1023-1026. (in chinese)
[31] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[32]   De Boer J M, Yan Y, Smant G, Davis E L, Baum T J. In situ hybridization to messenger RNA of Heterodera glycines. Journal of Nematology, 1998, 30(3): 309-312.
[33]   Vanholme B, De Meutter J, Tytgat T, Van Montagu M, Coomans A, Gheysen G. Secretions of plant-parasitic nematodes: a molecular update. Gene, 2004, 332: 13-27.
[34]   彭德良, 郑经武, 廖金铃, 万方浩. 重要植物线虫致病相关基因研究进展//彭友良. 中国植物病理学会2006年学术年会论文集. 北京: 中国农业科学技术出版社, 2006: 221-229.
Peng D L, Zheng J W, Liao J L, Wan F H. Advanced on putative patasitim genes of plant-parasitic nematodes and prospective//Peng Y L. Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Beijing: China Agricultural Science and Technology Press, 2006: 221-229. (in Chinese)
[35]   Bollati M, Milani M, Mastrangelo E, Ricagno S, Tedeschi G, Nonnis S, Decroly E, Selisko B, Lamballerie X D, Coutard B, Canard B, Bolognesi M. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. Journal of Molecular Biology, 2009, 385(1): 140-152.
[36]   Haegeman A, Jones J T, Danchin E G J. Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Molecular Plant-Microbe Interactions, 2011, 24(8): 879-887.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[3] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[4] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[5] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[6] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[7] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[8] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[9] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[10] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[11] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[12] LIU Chao, WANG LingLi, WU Di, DANG JiangBo, SHANG Wei, GUO QiGao, LIANG GuoLu. Molecular Cloning of Leaf Developmental Gene EjGRF5, Its Promoter and Expression Analysis in Different Ploidy Loquat (Eriobotrya japonica (Thunb.) Lindl.) [J]. Scientia Agricultura Sinica, 2018, 51(8): 1598-1606.
[13] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[14] PAN GuangZhao, ZHANG Kui, LI ChongYang, ZHAO YuZu, SHEN Li, XU Man, SU JingJing, LIN Xi, CUI HongJuan. Identification, Expression, and Functional Analysis of Cathepsin L in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3236-3246.
[15] PAN Qi, LIU XuXu, PENG HaoRan, PU YunDan, ZHANG YongZhi, YE SiHan, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression Analysis of Solanum lycopersicum SYTA [J]. Scientia Agricultura Sinica, 2017, 50(15): 2936-2945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!