Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (19): 4082-4090.doi: 10.3864/j.issn.0578-1752.2013.19.014

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Screening of Low Temperature Maize Stalk Decomposition Microorganism

 SA  Ru-La, GAO  Ju-Lin, YU  Xiao-Fang, HU  Shu-Ping   

  1. Agricultural College, Inner Mongolia Agriculture University, Hohhot 010019
  • Received:2013-04-28 Online:2013-10-01 Published:2013-07-16

Abstract: 【Objective】 For the purpose of accelerating the northern region maize straw degradation speed, a research was conducted to screen microorganism which has a good ability to degradate maize straw under the conditions of low temperature. 【Method】 In this experiment, materials rich in cellulose were used as bacteria sources, through preliminary screening by filter-paper disintegration indicator, enzyme activity and straw degradation rate re-screening, the maize straw degradation strains were selected, then its composition was analyzed. 【Result】 Using this method, two cellulose-degrading microflora (designated as No.1 and No.8) capable of effectively degrading maize straw was enriched from plateau rotted sawdust successfully. The microflora No.1 and No.8 were inoculated in the medium with maize straw as a sole carbon and energy source. The degradation rate of maize straw were 30.21% and 32.21% after 15 days cultivation under 15℃. Two groups of composite microbial systems were composed of fungi and bacteria.No.1 strains of fungus were Trichoderma, and No.8 strains fungus were Penicillium. Two groups of composite microbial system was mainly composed of Clostridium bacteria, Bacillus and oxalic acid bacillus bacteria. 【Conclusion】 Screening of the strains under low temperature (15℃) could degrade the maize straw under laboratory conditions, and the microbial system was mainly comprised of Trichoderma, Penicillium, Clostridium, Bacillus and Herbaspirillum.

Key words: maize stalk , decomposition microorganism , low temperature , DGGE

[1]郭夏丽, 杨小丽, 顺义, 王岩. 秸秆降解菌的筛选及菌种组合. 郑州大学学报: 工学版, 2010, 31(1): 74-75.

Guo X L, Yang X L, Shun Y, Wang Y. Screening straw degradation bacterial strains and strains combination. Journal of Zhengzhou University: Engineering and Technology Edition, 2010, 31(1): 74-75. (in Chinese)

[2]曾青兰. 高活性纤维素酶菌株的筛选鉴定和秸秆降解特性的研究[D]. 武汉: 华中农业大学, 2008.

Zeng Q L, Screening and identification of a strain with high cellulase activity and its straw degradation characteristics[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese)

[3]李慧君, 杜双田, 孙婷, 金凌云, 荆留萍, 马璐. 纤维素分解菌的筛选及玉米秸秆降解. 西北农业学报, 2010, 19(8): 74-79.

Li H J, Du S T, Sun T, Jin L Y, Jing L P, Ma L. Screening of cellulose decomposer and study of corn straw degradation. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(8): 74-79. (in Chinese)

[4]刘尧, 李力, 李俊, 关大伟, 姜昕, 沈德龙, 杜秉海. 玉米秸秆高效腐解复合菌系CSS-1的选育及其组成分析. 中国农业科学, 2010, 43(21): 4437-4446.

Liu Y, Li L, Li J, Guan D W, Jiang X, Shen D L, Du B H. Construction and composition analysis of the complex microbial system CSS-1 of high decomposition efficiency for corn stalks. Scientia Agricultura Sinica, 2010, 43(21): 4437-4446. (in Chinese)

[5]段亚冰, 陈洋洋, 康业斌. F1菌株对玉米秸秆木质素和纤维素降解能力的研究. 河南农业科学, 2009(4): 30.

Duan Y B, Chen Y Y, Tang Y B. Decomposable ability of F1 strain to lignin and cellulose of corn stalk. Henan Agricultural Sciences, 2009(4): 30. (in Chinese)

[6]杨小丽. 秸秆降解菌的选育及复配研究[D]. 郑州: 郑州大学, 2009.

Yang X L. Research on the screening and combination of straw- degradation microorganism[D]. Zhengzhou: Zhengzhou University, 2009. (in Chinese)

[7]李慧君. 秸秆纤维素降解菌的筛选及其利用研究[D]. 杨凌: 西北农林科技大学, 2010.

Li H J. The filtration and use of microorganism with cornstalk-fibre catabolism ability[D]. Yangling : Northwest A&F University, 2010. (in Chinese)

[8]韩晓云, 姜安玺, 何丽蓉. 低温菌及其在环境工程中的应用. 东北林业大学学报, 2003, 31(2): 33-35.

Han X Y, Jiang A X, He L R. Cold-adapted microorganisms and its applications to environmental engineering. Journal of Northeast Forestry University, 2003, 31(2): 33-35. (in Chinese)

[9]姚良同, 丁延芹, 刘尧, 陈一然, 杜秉海, 李俊. 玉米秸秆低温快速腐熟菌的筛选、鉴定及效果试验. 山东农业科学, 2008(3): 85-87.

Yao L T, Ding Y Q, Liu Y, Chen Y R, Du B H, Li J. Screening and identification on of bacteria decomposing maize straw under low temperature and their effect test. Shandong Agricultural Sciences, 2008(3): 85-87. (in Chinese)

[10]董敏. 若尔盖湿地不同温度型纤维素分解菌的分离、鉴定和共发酵效果研究[D]. 成都: 四川农业大学, 2005.

Dong M. Isolation, identification of different temperature type cellulolytic micobes from Zoige Wetland and the effect of co-ferrmentation[D]. Chengdu: Sichuan Agricultural University, 2005. (in Chinese)

[11]王洪媛, 范丙全. 三株高效秸秆纤维素降解真菌的筛选及其降解效果. 微生物学报, 2010, 50(7): 870-875.

Wang H Y, Fan B Q. Screening of three straw-cellulose degrading microorganism. Acta Microbiologica Sinica, 2010, 50(7): 870-875. (in Chinese)

[12]卢月霞, 尹会兰, 黄慧敏, 杨海如. 纤维素酶产生菌的筛选及其相互作用研究. 河南农业科学, 2010(1): 59-62.

Lu Y X, Yin H L, Huang H M, Yang H R. Screening of CMCase producing microorganisms and their interaction. Henan Agricultural Sciences, 2010(1): 59-62. (in Chinese)

[13]叶生梅, 薛正莲, 王岚岚. 纤维素酶产生菌的筛选及其固态发酵初步研究. 安徽理工大学学报: 自然科学版, 2003, 23(1): 57-59.

Ye S M, Xue Z L, Wang L L. Screening of producing cellulose strain and its preliminary studies of solid-state fermentation. Journal of Anhui University of Science and Technology: Natural Science Edition, 2003, 23(1): 57-59. (in Chinese)

[14]史央, 蒋爱芹, 戴传超, 陆玲. 秸秆降解的微生物学机理研究及应用进展. 微生物学杂志, 2002, 22(1): 47-50.

Shi Y, Jiang A Q, Dai C C, Lu L. The research on mechanism and application of straw degradation in microbiological. Journal of Microbiology, 2002, 22(1): 47-50. (in Chinese)

[15]郭夏丽, 程小平, 杨小丽, 王岩. 高效玉米秸秆降解菌复合系的构建. 中国农学通报, 2010, 26(7): 261-266.

Guo X L, Cheng X P, Yang X L, Wang Y. Construction of composite consortia with high capacity of lignocellulose degradation, Chinese Agricultural Science Bulletin, 2010, 26(7): 261-266. (in Chinese)

[16]Barsberg S, Selig M J, Felby C. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification. Biotechnology Letters, 2013, 35: 189-195.

[17]Olver B, Van Ds K J S, Beukes N, Pletschke B I. Synergy between EngE, XynA and ManA from clostridium cellulovorans on corn stalk, gross and pineapple pulp substrates. Biotech, 2011, 1:187-192.

[18]宋亚彬, 戚桂娜, 邓伟, 陈文浩, 王伟东. 中温木质纤维素降解复合菌系BYUND-8的筛选及培养条件优化. 黑龙江八一农垦大学学报, 2008, 20(6): 62-67.

Song Y B, Qi G N, Deng W, Chen W H, Wang W D. Microbial community capable of lignocellulose degradation under moderate temperature and optimization of cultural conditions. Journal of Heilongjiang August First Land Reclamation University, 2008, 20(6): 62-67. (in Chinese)

[19]崔宗均, 李美丹, 朴哲, 黄志勇, Masaharu Ishii, Yasuo Igarashi. 一组高效稳定纤维素分解菌复合系MCl的筛选及功能. 环境科学, 2002, 23(3): 36-39.

Cui Z J, Li M D, Pu X, Huang Z Y, Ishii M, Igarashi Y. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Environmental Science, 2002, 23(3): 36-39. (in Chinese)

[20]甄静, 王继雯, 谢宝恩, 李冠杰, 刘莹莹, 周伏忠, 陈国参. 一株纤维素降解真菌的筛选、鉴定及酶学性质分析. 微生物学通报, 2011, 38(5): 709-714.

Zhen J, Wang J W, Xie B E, Li G J, Liu Y Y, Zhou F Z, Chen G C. Isolation, identification of a cellulose-producing strain and characterization of its cellulose-producing capability. Journal of Microbiology, 2011, 38(5): 709-714. (in Chinese)

[21]马志远, 罗晶, 冯志珍, 林星华, 段军娜, 安德荣. 具有生防功效的玉米秸秆降解复合菌系的构建. 西北农林科技大学学报: 自然科学版, 2012, 40(4): 115-120.

Ma Z Y, Luo J, Feng Z Z, Lin X H, Duan J N, An D R. Construction of composite microbial system with capacity of straw degradation and biocontrol efficacity. Journal of Northwest A&F University: Natural Science Edition, 2012, 40(4): 115-120. (in Chinese)

[22]吕睿瑞, 田宝玉, 高媛媛, 林伟铃, 王春香, 黄建忠. 不同地区森林土壤降解天然木质纤维素能力的分析评价. 生物技术, 2010, 20(2): 77-80.

Lü R R, Tian B Y, Gao Y Y, Lin W L, Wang C X, Huang J Z. Evaluation of the lignocellulose-degrading ability on different forest soil samples. Biotechnology, 2010, 20(2): 77-80. (in Chinese)

[23]刘保平. 作物秸秆的微生物降解研究[D]. 哈尔滨: 东北农业大学, 2009.

Liu B P. Study on microbial degradation of crop stalks[D]. Haerbin: Northeast Agricultural University, 2009. (in Chinese)

[24]薛红枫, 闫贵龙, 孟庆翔. 玉米秸秆不同部位碳水化合物组分体外发酵动态分析. 畜牧兽医学报, 2007, 38(9): 926-933.

Xue H F, Yan G L, Meng Q X. In vitro fermentation kinetic analysis of the carbohydrate fractions in various sections of corn stralks. Acta Veterinaria et Zootechnica Sinica, 2007, 38(9): 926-933. (in Chinese)

[25]闫贵龙, 曹春梅, 鲁琳, 孟庆翔. 玉米秸秆不同部位主要化学成分和活体外消化率比较. 中国农业大学学报, 2006, 11(3): 70-74.

Yan G L, Cao C M, Lu L, Meng Q X. Comparison of main chemical composition and in vitro digestibility in various sections of corn stalks, Journal of China Agricultural University, 2006, 11(3): 70-74 . (in Chinese)

[26]Shaukat Ali Abro. 培养条件下小麦及玉米秸秆在土壤中的腐解特性研究[D]. 杨凌: 西北农林科技大学, 2011.

Shaukat Ali Abro. Incubation study on characteristics of carbon mineralization from loess soil amended with wheat and maize straw[D]. Yangling: Northwest A&F University, 2011. (in Chinese)

[27]曲小爽. 高效桔青霉纤维素分解菌筛选及酶学初探[D]. 哈尔滨: 东北农业大学, 2009.

Qu X S. Isolation of high efficiency cellulose-degrading Penicillium, Citrinum and its enzymology characterstics[D]. Haerbin: Northeast Agricultural University, 2009. (in Chinese)

[28]高静. 棉花秸秆木质纤维素降解菌的筛选及鉴定[D]. 新疆•阿拉 尔: 塔里木大学, 2012.

Gao J. Isolation of cotton stalk cellulose- decomposing microorganisms. Xinjiang•Alaer: Talimu University, 2012. (in Chinese)

[29]刘震东. 高效木质纤维素分解菌复合系的发酵特性[D]. 哈尔滨: 东北农业大学, 2009.

Liu Z D. The characteristic of an efficient microbial system with ligno-cellulosic degradation bacteria[D]. Haerbin: Northeast Agricultural University, 2009. (in Chinese)

[30]邓伟. 木质纤维素降解复合菌系的微生物组成多样性及其牛粪堆肥化中的应用[D]. 大庆: 黑龙江八一农垦大学, 2010.

Deng W. The bacterial diversity of microbial community capable of lingo cellulose degradation and it’s spplication during composting process[D]. Daqing: Heilongjiang August First Land Reclamation University, 2010. (in Chinese)

[31]O’Sullivan C, Burrell P C, Clarke W P, Blackall L L. A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization. Journal of Applied Microbiology, 2007, 103(4): 1332-1343.
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[5] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[6] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[7] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[8] WANG HuiLing,YAN AiLing,SUN Lei,ZHANG GuoJun,WANG XiaoYue,REN JianCheng,XU HaiYing. Effects of Low Temperature Storage on Monoterpenes in Table Grape [J]. Scientia Agricultura Sinica, 2021, 54(1): 164-178.
[9] LIU ShuSen,MA HongXia,GUO Ning,SHI Jie,ZHANG HaiJian,SUN Hua,JIN Ge. Analysis of Main Pathogens and Dominant Species of Maize Stalk Rot in the Main Summer Maize Producing reas of Huang-Huai-Hai [J]. Scientia Agricultura Sinica, 2019, 52(2): 262-272.
[10] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[11] LIU LeiLei,JI HongTing,LIU Bing,MA JiFeng,XIAO LiuJun,TANG Liang,CAO WeiXing,ZHU Yan. Effects of Jointing and Booting Low Temperature Treatments on Photosynthetic and Chlorophyll Fluorescence Characteristics in Wheat Leaf [J]. Scientia Agricultura Sinica, 2018, 51(23): 4434-4448.
[12] ZHANG Xun, HAO JianPing, WANG Pu, ZHANG Ping, CHEN LuJie. Effects of Low Temperature on Maize Superior and Inferior Kernels Development During Grain Filling in Vitro [J]. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.
[13] LIU FengJiao, CAI BingBing, SUN ShengNan, BI HuanGai,AI XiZhen. Effect of Hydrogen-Rich Water Soaked Cucumber Seeds on Cold Tolerance and Its Physiological Mechanism in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2017, 50(5): 881-889.
[14] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[15] WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin. The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis [J]. Scientia Agricultura Sinica, 2016, 49(4): 677-685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!