Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (16): 3514-3522.doi: 10.3864/j.issn.0578-1752.2013.16.023

• RESEARCH NOTES • Previous Articles    

Molecular Cloning and Expression Analysis of Heat-Shock-Protein90 (LsHsp90) Gene from Leaf Lettuce (Lactuca sativa L.) Under Heat Shock

 REN  Yue, HAN  Ying-Yan, LI  Ting, HAO  Jing-Hong, FAN  Shuang-Xi   

  1. College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206
  • Received:2013-02-07 Online:2013-08-15 Published:2013-05-02

Abstract: 【Objective】 LsHsp90 gene was cloned and used to analyze the expression profiles under heat shock stresses, in order to provide a foundation for investigating heat tolerant mechanisms of molecular regulation in stress tolerance of Lactuca sativa L.【Method】 With homology cloning approaches coupling with RACE techniques, the full-length cDNA of LsHsp90 was cloned from total RNA of the leaves of L. sativa L. Real-time quantitative PCR (qRT-PCR) was used to analyze the expression patterns of this gene in leaves after heat shock unter 37℃ and 42℃.【Result】The full cDNA sequence of LsHsp90 is 2 330 bp,containing a 2 097 bp open reading flame (ORF) and encoding 698 amino acid residues with a predicted molecular mass of 79.8 kD.The LsHsp90 protein contains a predicted ATPase site and a Hsp90 conservative structure domain, which is highly conserved in plants and especially similar to Hsp90 from Ageratina adenophora (EU269070.1) and Arabidopsis thaliana (AY081302.1). Phylogenetic analysis showed that LsHsp90 and Hsp90 from Ageratina adenophora (EU269070.1) were clustered into one group. Real-time PCR analysis showed that, the expression of LsHsp90 in leaves of two varieties was upregulated under 37℃. LsHsp90 was induced down regulation in heat-sensitive variety S106 under 42℃, while the expression of LsHsp90 in heat-tolerant variety Z36 was upregulated.【Conclusion】LsHsp90 gene was firstly isolated and characterized from L. sativa L. This gene has genetic characteristics similar with all species and the induced expression profiling of LsHsp90 showed different patterns under heat stress. The results indicate that the LsHsp90 gene may play an important role in response to heat shock stress.

Key words: Lactuca sativa L. , Hsp90 , gene clone , heat stress , gene expression

[1]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 1996, 32(1/2): 191-222.

[2]Miernyk J A. Protein folding in the plant cell. Plant Physiology, 1999, 121(3): 695-703.

[3]Mukhopadhyay I, Nazir A, Saxena D K, Chowdhuri D K. Heat shock response: hsp70 in environmental monitoring. Journal of Biochemical and Molecular Toxicology, 2003, 17(5): 249-254.

[4]Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics, 2008, 71(4): 391-411.

[5]Sun W, Van M M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta, 2002, 1577(1): 1-9.

[6]Carper S W, Duffy J J, Gerner E W. Heat shock protein in thermotolerance and other cellular processes. Cancer Research, 1987, 47(20): 5249-5255.

[7]Emelyanov V V. Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. Gene, 2002, 299(1-2): 125-133.

[8]Pearl L H, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 2006, 75: 271-294.

[9]Terasawa K, Minami M, Minami Y. Constantly up-dated knowledge of Hsp90. The Journal of Biochemistry, 2005, 137(4): 443-447.

[10]Wegele H, Wandinger S K, Schmid A B, Reinstein J, Buchner J. Substrate transfer from the chaper-one Hsp70 to Hsp90. Journal of Molecular Biology, 2006, 356(3): 802-811.

[11]Milioni D, Hatzopoulos P. Genomic organization of hsp90 gene family in Arabidopsis. Plant Molecular Biology, 1997, 35: 955-961.

[12]Krishna P, Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones, 2001, 6: 238-246.

[13]Chen B, Zhong D B, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 2006, 7: 156.

[14]Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I. Heat-induced chaperone activity of HSP90. Journal of Biological Chemistry, 1996, 271(5): 2641-2645.

[15]Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S S. The role of heat shock proteins in reproduction. European Society of Human Reproduction and Embryology, 2000, 6(2): 149-159.

[16]宫伟娜.低温胁迫过程中入侵植物紫茎泽兰热激蛋白基因的作用[D]. 北京: 中国农业科学院, 2009.

Gong W N. The effect of the heat shock protein genes of invasive alien weed Ageratina adenophora (compositae) under low temperature stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)

[17]高丽红, 尚庆茂, 马海艳. 两种不同耐热性菜豆品种在高温胁迫下叶绿素a 荧光参数的差异. 中国农学通报, 2004, 20(1): 173-176.

Gao L H, Shang Q M, Ma H Y. The difference of chlorophyll a fluorescence parameter in two common beans varieties with heat tolerance under high temperature stress. Chinese Agricultural Science Bulletin, 2004, 20(1): 173-176. (in Chinese)

[18]吴斌. 萝卜耐热性鉴定与热激蛋白基因克隆[D]. 南京农业大学, 2009.

Wu B. Identification of heat resistances and cloning of HSP gene in radish (Raphanus sativus L.) [D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)

[19]陈以博, 侯喜林, 陈晓峰. 不结球白菜幼苗耐热性机制初步研究. 南京农业大学学报, 2010, 33(1): 27-31.

Chen Y B, Hou X L, Chen X F. Studies on heat tolerance mechanism of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Journal of Nanjing Agricultural University, 2010, 33(1): 27-31. (in Chinese)

[20]周群初, 马艳青. 蔬菜耐热性研究现状及展望. 长江蔬菜, 2000(3): 1-4.

Zhou Y C, Ma Y Q. Progress and present research of heat resistance in vegetables. Journal of Changjiang Vegetables, 2000(3): 1-4. (in Chinese)

[21]胡俏强, 陈龙正, 张永吉, 徐海, 宋波, 苏小俊, 袁希汉. 普通白菜苗期耐热性鉴定方法研究. 中国蔬菜, 2011(2): 56-61.

Hu Q Q, Chen L Z, Zhang Y J, Xu B, Song B, Su X J, Yuan X H. Studies on heat tolerance identification method for non-heading Chinese cabbage [Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee]. Chinese Vegetables, 2011(2): 56-61. (in Chinese)

[22]吴韩英, 寿森炎, 朱祝军, 杨信廷. 高温胁迫对甜椒光合作用和叶绿素荧光的影响. 园艺学报, 2001, 28(6): 517-521.

Wu H Y, Shou S Y, Zhu Z J, Yang X T. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicumf ructescens L.). Acta Horticulturae Sinica, 2001, 28(6): 517-521. (in Chinese)

[23]Prodromou C, Roe S M, O'Brien R, Ladbury J E, Piper P W, Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90(1): 65-75.

[24]Gupta R S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Molecular Biology and Evolution, 1995, 12(6): 1063-1073.

[25]Minami Y, Kimura Y, Kawasaki H, Suzuki K, YaharaI. The carboxy-teminal region of mammalian Hsp90 is required for its dimerization and function in vivo. Molecular and Cellular Biology, 1994, 14(2): 1459-1464.

[26]Zhao R M, Houry W A. Hsp90: a chaperone for protein folding and gene regulation. Biochemistry and Cell Biology, 2005, 83(6): 703-710.

[27]Song H M, Fan P X, Shi W L, Zhao R M, Li Y X. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses. Journal of Plant Physiology, 2010, 167(14):1172-1178.

[28]Krebs R A, Holbrook S H. Reduced enzyme activity following Hsp70 overexpression in Drosophila melanogaster. Biochemical Genetics, 2001, 39(1/2): 73-82.

[29]Weng J, 周恒. 耐热与热敏感小麦品种对热冲击的不同反应. 麦类作物学报, 1993(2): 28-31.

Weng J, Zhou H. The different reactions of the heat-tolerant and heat-sensitive wheat varieties thermal shock. Journal of Triticeae Crops, 1993(2): 28-31. (in Chinese)

[30]周向红, 李信书, 王萍, 阎斌伦, 滕亚娟, 易乐飞. 条斑紫菜HSP90基因的克隆与表达分析. 水产学报, 2010, 34(12): 1844-1852.

Zhou X H, Li X S, Wang P, Yan B L, Teng Y J, Yi L F. Molecular cloning and expression analysis of HSP90 gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Journal of Fisheries of China, 2010, 34(12): 1844-1852. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[4] LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[9] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[12] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!