Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (16): 3478-3487.doi: 10.3864/j.issn.0578-1752.2013.16.019
• RESEARCH NOTES • Previous Articles Next Articles
LU Jun-Xing, LU Kun, ZHU Bin, PENG Qian, LU Qi-Feng, QU Cun-Min, YIN Jia-Ming, LI Jia-Na, LIANG Ying, CHAI You-Rong
[1]Bogre L, Meskiene I, Heberle-Bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation. Plant Molecular Biologyl, 2000, 43: 705-718.[2]Tena G, Asai T, Chiu W L, Sheen J. Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology 2001, 4: 392-400.[3]Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends in Plant Science, 2001, 6: 520-527.[4]Morris P C. MAP kinase signal transduction pathways in plants. New Phytologist, 2001, 151: 67-89.[5]Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. Febs Letters, 2007, 581: 1834-1840.[6]Morinaga T. Interspecific hybridization in Brassica: I. The cytology of F1 hybrids of B. napella and various other species with 10 chromosomes. Cytologia, 1929, 1: 16-27.[7]Morinaga T. Interspecific hybridization in Brassica: VI. The cytology of F1 hybrids of B. juncea and B. nigra. Cytologia, 1934, 6: 62-67.[8]Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7: 389-452.[9]Organisation for Economic Co-operation and Development. Series on harmonization of regulatory oversight in biotechnology No.7[R]. Consensus document on the biology of Brassica napus L. (oilseed rape), 52178, Paris: OCED, 1997.[10]Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S Q, Hirt H, Wilson C, Heberle-Bors E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 2002, 7: 301-308.[11]Ortiz-Masia D, Perez-Amador M A, Carbonell P, Aniento F, Carbonell J, Marcote M J. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 2008, 227: 1333-1342.[12]Mizoguchi T, Gotoh Y, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K. Characterization of 2 cDNAs that encode MAP Kinase Homologs in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. The Plant Journal, 1994, 5: 111-122.[13]Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 765-769.[14]Umezawa T, Sugiyama N, Takahashi F, Anderson J C, Ishihama Y, Peck S C, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in arabidopsis thaliana. Science Signaling, 2013, 6: 1-13.[15]Chen X, Truksa M, Shah S, Weselake R J. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Analytical Biochemistry, 2010, 405: 138-140.[16]Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55: 611-622.[17]Yang Y W, Lai K N, Tai P Y, Ma D P, Li W H. Molecular phylogenetic studies of Brassica, rorippa, arabidopsis and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. Molecular Phylogenetics and Evolution, 1999, 13: 455-462.[18]Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiology and Biochemistry, 2001, 39: 253-262.[19]Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Research, 2005, 15: 516-525.[20]Mun J H, Kwon S J, Yang T J, Seol Y J, Jin M, Kim J A, Lim M H, Kim J S, Baek S, Choi B S, Yu H J, Kim D S, Kim N, Lim K B, Lee S I, Hahn J H, Lim Y P, Bancroft I, Park B S. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biology, 2009, 10: R111.[21]Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. Journal of Plant Physiology, 2007, 164: 350-363.[22]Chen A H, Chai Y R, Li J N, Chen L. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). Journal of Biochemistry and Molecular Biology, 2007, 40: 247-260.[23]Ni Y, Jiang H L, Lei B, Li J N, Chai Y R. Molecular cloning, characterization and expression of two rapeseed (Brassica napus L.) cDNAs orthologous to Arabidopsis thaliana phenylalanine ammonia-lyase 1. Euphytica, 2008, 159: 1-16.[24]Lu K, Chai Y R, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu X F, Li J N. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE 12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. Theoretical and Applied Genetics, 2008, 117: 963-975.[25]Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Molecular Genetics and Genomics, 2009, 281: 109-123.[26]卢坤, 张凯, 柴友荣, 陆俊杏, 唐章林, 李加纳. 甘蓝和白菜紫色酸性磷酸酶17基因家族的克隆和比较分析. 作物学报, 2010, 36(3): 517-525. Lu K, Zhang K, Chai Y R, Lu J X, Tang Z L, Li J N. Cloning and comparative analysis of PURPLE ACID PHOSPHATASE 17 gene families in Brassica oleracea and Brassica rapa. Acta Agronomica Sinica, 2010, 36(3): 517-525. (in Chinese) |
[1] | SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404. |
[2] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[3] | WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16. |
[4] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[5] | MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202. |
[6] | ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867. |
[7] | HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398. |
[8] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[9] | LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574. |
[10] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[11] | ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624. |
[12] | LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926. |
[13] | GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716. |
[14] | ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. |
[15] | HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499. |
|