Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (12): 2592-2598.doi: 10.3864/j.issn.0578-1752.2013.12.021

• RESEARCH NOTES • Previous Articles     Next Articles

Analysis of Quantitative Expression of the Flowering-Regulating Transcription Factor CONSTANS Gene in Brassica napus L.

 ZHENG  Ben-Chuan, ZHANG  Jin-Fang, LI  Hao-Jie, CHAI  Liang, CUI  Cheng, JIANG  Jun, PU  Xiao-Bin, NIU  Ying-Ze, JIANG  Liang-Cai   

  1. 1.Crops Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066
    2.College of Agronomy, Sichuan Agricultural University, Wenjiang 611130, Sichuan
  • Received:2013-01-04 Online:2013-06-15 Published:2013-04-01

Abstract: 【Objective】The expression of CONSTANS(CO) homologous genes in B. napus was characterized. 【Method】Materials D626-6 and D125-5 with different growth periods were used to characterize the expression level of CO gene. A pair of specific primers was designed based on Bn1CON19 cDNA sequence, and a pair of Real-time fluorescence quantitative specific primers was designed according to the obtained cDNA sequence. The Real-time fluorescence quantitative analysis was conducted by using SYBR Green I dye method.【Result】 The results showed that the highest expression levels were appeared in the leaves of B. napus L., followed by the buds and stems. The expression levels in the morning and the evening were higher than those at noon. At different growth stages, the highest expression levels were appeared at bolting stage. The early-maturing material had a significantly higher express level than the late-maturing material in leaves and buds at bolting stage. 【Conclusion】 Result of the study indicated that the CO gene might play an important role in growth period and flower formation process in B. napus L..

Key words: Brassica napus L. , transcription factor , CO gene (CONSTANS) , qRT-PCR

[1]杨文钰, 屠乃美. 作物栽培学各论. 北京: 中国农业出版社, 2003.

Yang W Y, Tu N M. The Discourse of the Crop Cultivation Techniques. Beijing: China Agriculture Press, 2003. (in Chinese)

[2]傅永福, 孟凡静. 植物的成花生理信号. 中国农业大学学报, 1998, 3(3): 1-11.

Fu Y F, Meng F J. Flowering physiological signals in plant. Journal of China Agricultural University, 1998, 3(3): 1-11. (in Chinese)

[3]赵大中, 雍伟东, 种康, 谭克辉. 高等植物开花研究现状简述. 植物学通报, 1999, 16(2): 57-62.

Zhao D Z, Yong W D, Zhong K, Tan K H. Minireview of research advances on flowering in higher plant. Chinese Bulletin of Botany, 1999, 16(2): 57- 62. (in Chinese)

[4]雍伟东, 种康, 许智宏, 谭克辉, 朱至清. 高等植物开花时间决定的基因调控研究. 科学通报, 2000, 45(5): 455-466.

Yong W D, Zhong K, Xu Z H, Tan K H, Zhu Z Q. The gene regulation research of the flowering in high plant. Chinese Science Bulletin, 2000, 45(5): 455-466. (in Chinese)

[5]王必庆, 王国槐. 油菜早熟性研究进展. 作物研究, 2009, 23(5): 336-338.

Wang B Q, Wang G H. The advance research of the precocious rape. Crop Research, 2009, 23(5): 336-338. (in Chinese)

[6]Boss P K, Bastow R M, Mylne J S, Caroline D. Multiple pathways in the decision to flower: Enabling, promoting, and resetting. The Plant Cell, 2004, 16: 18-31.

[7]Putterill J, Robsonf, Leek, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zincfinger transcription factors. Cell, 1995, 80(6): 847-857.

[8]Onouchi H, Igeno M I, Perilleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing constans demonstrates novel insteractions among Arabidopsis flowering-time genes. The Plant Cell, 2000, 12(6): 885-900.

[9]Ayre K, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiology, 2004(135): 2271-2278.

[10]Samach A, Onouchi H, Gold S, Ditta G S, Schwara-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of constans target genes in reproductive development of Arabidopsis. Science, 2000(288): 1613-1616.

[11]Suarez-Lopez P, Wheatley K, Robson F, Onoouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120.

[12]Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419: 308-312.

[13]Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering. Science, 2004, 303: 1003-1006.

[14]Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigl D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005, 309(5737): 1056-1059.

[15]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030-1033.

[16]Wang N, Qian W, Suppanz I, Wei L J, Mao B Z, Long Y, Meng J L, Muller A E, Jung C. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of Experimental Botany, 2011, 8: 1-18.

[17]Zhao J J, Kulkarni V, Liu N Carpio D P D, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rape. Journal of Experimental Botany, 2010, 6: 1817-1825.

[18]艾育芳. 早晚熟油菜成花机理的初步研究[D]. 福州: 福建农林大 学, 2011.

Ai Y F. Preliminary study on flowering mechanism of early and late maturing of oilseed rape (Brassica napus L.) [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese)

[19]赵焕英, 包金凤. 实时荧光定量PCR技术的原理及其应用研究进展. 中国组织化学与细胞化学杂志, 2007, 16(04): 492-497.

Zhao H Y, Bao J F. The principle and advances research of the quantitative real-time PCR. Chinese Journal of Histochemistry and Cytochemistry, 2007, 16(04): 492-497. (in Chinese) 

[20]杨怡姝, 孙晓娜, 王小利, 沈思嗣, 李泽琳, 曾毅. 实时荧光定量PCR技术的操作实践. 实验室研究与探索, 2011, 7: 15-19.

Yang Y S, Sun X N, Wang X L, Shen S S, Li Z L, Zeng Y. Experimental teaching of real-time fluorescent quantitative PCR. Research and Exploration in Laboratory, 2011, 7: 15-19. (in Chinese)

[21]张鋆. 荧光实时定量PCR技术初探. 生命科学趋势, 2003, 12(1): 1-28.

Zhang J. The praevium study of quantitative real-time PCR. Trends in Life Sciences, 2003, 12(1): 1-28. (in Chinese)

[22]赵文静, 徐洁, 包秋华 陈永福, 张和平. 实时荧光定量PCR中内参基因的选择. 微生物学通报, 2010, 37(12): 1825-1829.

Zhao W J, Xu J, Bao Q H, Chen Y F, Zhang H P. Selection of reference genes for real-time quantitative PCR. Microbiology China, 2010, 37(12): 1825-1829. (in Chinese)

[23]田露申. 甘蓝型油菜异源白花性状的遗传及相关基因的克隆与分析[D]. 成都: 四川农业大学, 2011.

Tian L S. Gene analysis, cloning and characterization of the related genes for allogenous white flower character in Brassica napus L. [D]. Chengdu: Sichuan Agricultural University, 2011. (in Chinese)

[24]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737): 1052-1056.

[25]Kobayashi Y, Weigel D. Move on up, It's time for change--mobile signals controlling photoperiod-dependent flowering. Genes and Development, 2007, 21(19): 2371-2384.

[26]Searle I, Coupland G. Induction of flowering by seasonal changes in photoperiod. European Molecular Biology Organization Journal, 2004, 23(6): 1217-1222.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[3] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[4] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[5] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[6] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[7] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[8] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[9] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[10] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[11] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[12] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[13] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[14] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[15] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!