Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1716-1724.doi: 10.3864/j.issn.0578-1752.2013.08.022

• VETERINARY SCIENCE • Previous Articles     Next Articles

Recent Advances in Research on Bovine Oocyte Maturation Technology in vitro

 JIA  Zhen-Wei, TIAN  Jian-Hui, AN  Lei, ZHANG  Jia-Xin   

  1. 1.College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao 028043, Inner Mongolia
    2.College of Animal Science and Technology, China Agricultural University, Beijing 100193
    3.College of Animal Science and Technology, Inner Mongolia Agricultural University, Huhhot 010018
  • Received:2012-11-12 Online:2013-04-15 Published:2013-03-06

Abstract: Bovine oocyte in vitro maturation (IVM) is an important reproductive technology, however, as these oocytes were maturated in vitro that is deficient in growing process and some crucial event in vivo during antral follicular development prior to the LH surge, which interfere cytoplasmic maturation, thus resulting in reduced developmental capacity compared to in vivo maturated counterparts. Oocyte maturation is a complex process that involves events of nuclear, cytoplasmic and molecular maturation. Bovine oocyte maturation during in vitro culture is affected by many factors including source of oocyte, bidirectional communication between the oocyte and its surrounding cumulus cells and maturation environment. Up to date, to improve the developmental competence of bovine oocytes in vitro, some new technologies, for example, attenuating spontaneous oocyte maturation, improving oocyte maturation using exogenous oocyte-secreted growth factors and simulated physiological oocyte maturation have been developed for enhancing bovine oocytes maturation in vitro by simulating in vivo oocytes growing environment. This paper reviewed the maturation processes of bovine oocytes, the factors affecting oocyte maturation in vitro and the latest approach to improve the maturation rate of bovine oocytes in vitro.

Key words: bovine , oocyte , maturation , technology

`[1]Gilchrist R B, Ritter L J, Armstrong D T. Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, 2004, 82/83: 431-446.

[2]Somfai T, Kikuchi K, Onishi A, Iwamoto M, Fuchimoto D, Papp A B, Sato E, Nagai T. Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Molecular Reproduction and Development, 2004, 68(4): 484-491.

[3]Ferreira E M, Vireque A A, Adona P R, Meirelles F V, Ferriani R A, Navarro P A. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology, 2009, 71(5): 836-848.

[4]Hendriksen P J, Vos P L, Steenweg W N, Bevers M M, Dieleman S J. Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology, 2000, 53(1): 11-20.

[5]Gilchrist R B, Thompson J G. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology, 2007, 67(1): 6-15.

[6]]Hagemann L J, Beaumont S E, Berg M, Dotin M J, Ledgard A, Peterson A J, Schurmann A, Tervit H R. Development during single IVP of bovine oocytes from dissected follicles: interactive effects of estrous cycle stage, follicle size and atresia. Molecular Reproduction and Development, 1999, 53(4): 451-458.

[7]Hendriksen P J, Vos P L, Steenweg W N, Bevers M M, Dieleman S J. Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology, 2000, 53(1): 11-20.

[8]Hashimoto S, Minami N, Takakura R, Imai H. Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro . Biology of Reproduction, 2002, 66(6): 1696-1701.

[9]Thomas R E, Thompson J G, Armstrong D T, Gilchrist R B. Effect of speci?c phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity. Biology of Reproduction, 2004, 71(4): 1142-1149.

[10]Hussein T S, Thompson J G, Gilchrist R B. Oocyte-secreted factors enhance oocyte developmental competence. Developmental Biology, 2006, 296(2): 514-521.

[11]Albuz F K, Sasseville M, Lane M, Armstrong D T, Thompson J G, Gilchrist R B. Simulated physiological oocyte maturation(SPOM): a novel in vitro maturation system that substantially improves embryo yield andpregnancy outcomes. Human Reproduction, 2010, 25(12): 2999-3011.

[12]Brevini-Gandol? T, Gandol? F. The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology, 2001, 55(6): 1255-1276.

[13]Sirard M A, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65(1): 126-136.

[14]Tan J H, Wang H L, Sun X S, Liu Y, Sui H S, Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Molecular Human Reproduction, 2009, 15(1): 1-9.

[15]Rizos D, Ward F, Duffy P, Boland M P, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular Reproduction and Development, 2002, 61(2): 234-248.

[16]Calarco P G. Polarization of mitochondria in the unfertilized mouse oocyte. Developmental Genetic, 1995, 16(1): 36-43.

[17]Chebrout M, de Lesegno C V, Reynaud K, Chat S, Chastant-Maillard S. Nuclear and cytoplasmic maturation of canine oocytes related to in vitro denudation. Reproduction in Domestic Animals, 2009, 44(Suppl. 2): 243-246.

[18]Stojkovic M, Machado S A, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves P B, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction, 2001, 64 (3): 904-909.

[19]Hyttel P, Laurincik J,Viuff D, Fair T, Zakhartchenko V, Rosenkranz C, Avery B, Rath D, Niemann H, Thomsen P D, Schellander K, Callesen H, Wolf E, Ochs R L, Greve T. Activation of ribosomal RNA genes in preimplantation cattle and swine embryos. Animal Reproduction Science, 2000, 60(2): 49-60.

[20]Liu M. The biology and dynamics of mammalian cortical granules. Reproductive Biology and Endocrinology, 2011, 9: 149.

[21]Ai J S, Wang Q, Li M, Shi L H, Ola S I, Xiong B, Yin S, Chen D Y, Sun Q Y. Roles of microtubules and microfilaments in spindle movements during rat oocyte meiosis. Journal of Reproduction and Development, 2008, 54(5): 391-396.

[22]Sun Q Y, Schatten H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction, 2006, 131(2): 193-205.

[23]Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and ?nal maturation in cattle. Theriogenology, 1997, 47(1): 23-32.

[24]Memili E, First N L. Zygotic and embryonic gene expression in cow: A review of timing and mechanisms of early gene expression as compared with other species. Zygote, 2000, 8(1): 87-96.

[25]Vigneault C, McGraw S, Sirard M A. Spatiotemporal expression of transcriptional regulators in concert with the maternal-to-embryonic transition during bovine in vitro embryogenesis. Reproduction, 2009, 137(1): 13-21.

[26]Alm H, Katska-Ksiazkiewicz L, Ryńska B, Tuchscherer A. Survival and meiotic competence of bovine oocytes originating from early antral ovarian follicles. Theriogenology, 2006, 65(7): 1422-1434.

[27]Lequarre A S, Vigneron C, Ribaucour F, Holm P, Donnay I, Dalbies-Tran R, Callesen H, Mermillod P. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology, 2005, 63(3): 841-859.

[28]禹学礼, 昝林森, 邓雯, 庞有志, 王新庄. 卵泡大小及卵泡液对牛卵母细胞体外受精后发育的影响. 中国农业科学, 2005, 38(8): 1664-1668.

Yu X L, Zan L S, Deng W, Pang Y Z, Wang X Z. Effects of follicle size and bovine follicular fluid on developmental competence of bovine oocytes following maturation, fertilization and culture in vitro. Scientia Agricultural Sinica, 2005, 38(8): 1664-1668. (in Chinese)

[29]Sutton-McDowall M L, Gilchrist R B, Thompson J G. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation, the influence of glucosamine and follicle stimulating hormone. Reproduction, 2004, 128(3): 313-319.

[30]Nagai T. The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology, 2001, 55(6): 1291-1301.

[31]de Matos D G, Gasparrini B, Pasqualini S R, Thompson J G. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 2002, 57(5): 1443-1451.

[32]van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reproduction in Domesict Animals, 2002, 37(3): 144-151.

[33]Wongsrikeao P, Kaneshige Y, Ooki R, Taniguchi M, Agung B, Nii M, Otoi T. Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reproduction in Domesict Animals, 2005, 40(2): 166-170.

[34]Hamel M, Dufort I, Robert C, Leveille M C, Leader A, Sirard M A. Identification of follicular marker genes as pregnancy predictors for human IVF: newevidence for the involvement of luteinization process. Molecular Human Reproduction, 2008, 16(8): 548-556.

[35]Van Montfoort A P A, Geraedts J P M, Dumoulin J C M, Stassen A P M, Evers J L H, Ayoubi T A Y. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Molecular Human Reproduction, 2008, 14(3): 157-168.

[36]Assou S, Haouzi D, de Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Molecular Human Reproduction, 2010, 16(8): 531-538.

[37]Albertini D F, Combelles C M, Benecchi E, Carabatsos M J. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction, 2001, 121: 647-653.

[38]Hanrahan J P, Gregan S M, Mulsant P, Mullen M, Davis G H, Powell R, Galloway S M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclaresheep(Ovis aries) . Biology of Reproduction, 2004, 70(4): 900-909.

[39]Lanuza G M, Fischman ML, Baranao J L. Growth promoting activity of oocytes on granulosa cells is decreased upon meiotic maturation. Developmental Biology, 1998, 197(1): 129-139.

[40]Li R, Norman R J, Armstrong D T, Gilchrist R B. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biology of Reproduction, 2000, 63(3): 839-845.

[41]Gilchrist R B, Morrissey M P, Ritter L J, Armstrong D T. Comparison of oocyte factors and transforming growth factor-beta in the regulation of DNA synthesis in bovine granulosa cells. Molecular Cell Endocrinology, 2003, 201(1/2): 87-95.

[42]Hickey T E, Marrocco D L, Gilchrist R B, Norman R J, Armstrong D T. Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biology of Reproduction, 2004, 71(1): 45-52.

[43]Su Y Q, Sugiura K, Wigglesworth K, O'Brien M J, Affourtit J P, Pangas S A, Matzuk M M, Eppig J J. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development, 2008, 135(1): 111-121.

[44]Choi Y H, Carnevale E M, Seidel G E Jr, Squire E L. Effects of gonadotropins on bovine oocytes matured in TCM-199. Theriogenology, 2001, 56(4): 661-670.

[45]Sutton-McDowall M L, Gilchrist R B, Thompson J G. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction, 2004, 128: 313-319.

[46]Mizushima S, Fukui Y. Fertilizability and developmental capacity of bovine oocytes cultured individually in a chemically defined maturation medium. Theriogenology, 2001, 55(7): 1431-1445

[47]毛晶, 李钟淑, 蔡文莲, 胡艳明, 祖晶, 王士勇, 方南洙. 聚乙烯醇、聚乙烯吡咯烷酮和牛血清白蛋白对牛卵母细胞成熟及体细胞克隆胚胎发育的影响. 黑龙江畜牧兽医, 2008, 10: 12-15.

Mao J, Li Z S, Cai W L, Hu Y M, Zu J, Wang S Y, Fang N Z. The effect of PVA, PVP and BSA for oocytes maturation and somatic cloned embryos development in vitro. Heilongjiang Animal Science and Veterinary Medicine, 2008, 10: 12-15. (in Chinese)

[48]Mingoti G Z, Caiado Castro V S, Méo S C, Barretto L S, Garcia J M. The effect of interaction between macromolecule supplement and oxygen tension on bovine oocytes and embryos cultured in vitro. Zygote, 2009, 17(4): 321-328.

[49]Sutton-McDowall M L, Gilchrist R B, Thompson J G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, 2010, 139(4): 685-695.

[50]Sugiura K, Pendola F L, Eppig J J. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Developmental Biology, 2005, 279(1): 20-30.

[51]Krisher, R L, Bavister B D. Responses of oocytes and embryos to the culture environment. Theriogenology, 1998, 49(1): 103-114.

[52]Hashimoto S, Minami N, Yamada M, Imai H. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents. Molecular Reproduction and Development, 2000, 56(4): 520-526.

[53]吴凯峰, 刘东军, 旭日干. EGF、IGF-I对牛卵母细胞体外成熟的影响. 内蒙古大学学报: 自然科学版, 2006, 37(5): 552-555.

Wu K F, Liu D J, Xu R G. Effects of EGF and IGF-I on in vitro maturation of bovine oocytes. Acta Scientiarum Naturalium Universitatis NeiMongol: Natural Science Edition, 2006, 37(5): 552-555. (in Chinese)

[54]Chung J T, Tosca L, Huang T H, Xu L, Niwa K, Chian R C. Effect of polyvinylpyrrolidone on bovine oocyte maturation in vitro and subsequent fertilization and embryonic development. Reproductive Biomedicine Online, 2007, 15(2): 198-207.

[55]Sakaguchi M, Dominko T, Leibfried-Rutledge M L, Nagai T, First N L. A combination of EGF and IGF-1 accelerates the progression of meiosis in bovine follicular oocytes in vitro and fetal calf serum neutrali zes the acceleration effect. Theriogenology, 2000, 54(8): 1327-1342.

[56]Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N. Low oxygen tension during in vitro maturation is bene?cial for supporting the subsequent development of bovine cumulus-oocyte complexes. Molecular Reproduction and Development, 2000, 57(4): 353-360.

[57]Adona P R, Lima Verde Leal C. Meiotic inhibition with different cyclindependent kinase inhibitors in bovine oocytes and its effects on maturation and embryo development. Zygote, 2004, 12(3): 197-204.

[58]Donnay I, Faerge I, Grøndahl C, Verhaeghe B, Sayoud H, Ponderato N, Galli C, Lazzari G. Effect of prematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation and competence to development of calf oocytes. Theriogenology, 2004, 62 (6): 1093-1107.

[59]Diez C, Duque P, Gómez E, Hidalgo C O, Tamargo C, Rodríguez A, Fernández L, de la Varga S, Fernández A, Facal N, Carbajo M. Bovine oocyte vitrification before or after meiotic arrest: effects on ultrastructure and developmental ability. Theriogenology, 2005, 64(2): 317-333.

[60]陈明, 朱云干, 卞桂华. 磷酸二酯酶抑制剂对水牛卵母细胞体外成熟的影响. 安徽农业科学, 2012, 40(5): 6-10.

Chen M, Zhu Y G, Bian G H. Effects of phosphodiesterase inhibitor on the in vitro maturation of buffalo oocytes. Journal of Anhui Agricultural Sciences, 2012, 40(5): 6-10. (in Chinese)

[61]Dode M A, Adona P R. Developmental capacity of Bos indicus oocytes after inhibition of meiotic resumption by 6- dimethylaminopurine. Animal Reproduction Science, 2001, 65(3): 171-180.

[62]Albarracín J L, Morató R, Izquierdo D, Mogas T. Effects of roscovitine on the nuclear and cytoskeletal components of calf oocytes and their subsequent development. Theriogenology, 2005, 64(8): 1740-1755.

[63]Adona P R, Pires P R, Quetglas M D, Schwarz K R, Leal C L. Nuclear maturation kinetics and in vitro embryo development of cattle oocytes prematured with butyrolactone I combined or not combined with roscovitine. Animal Reproduction Science, 2008, 104(2): 389-397.

[64]Lonergan P, Dinnyes A, Fair T, Yang X, Boland M. Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I. Molecular Reproduction and Development, 2000, 57(2): 204-209.

[65]Mermillod P, Tomanek M, Marchal R, Meijer L. High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 h in culture by speci?c inhibition of MPF kinase activity. Molecular Reproduction and Development, 2000, 55(1): 89-95.

[66]Thomas R E, Armstrong D T, Gilchrist R B. Differential effects of speci?c phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Developmental Biology, 2002, 244(2): 215-225.

[67]Zhang M, Su Y Q, Sugiura K, Xia G, Eppig J J. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 2010, 330(6002): 366-369.

[68]贾振伟. 激素诱导犊牛卵泡发育及C型钠肽对牛卵母细胞减数分裂和体外发育的影响[D]. 北京: 中国农业大学, 2012.

Jia Z W. The development of folliculars in calves induced by hormone and effect of CNP on bovine oocyte meiosis and development in vitro[D]. Beijing: China Agricultural University, 2012. (in Chinese)

[69]Hussein T S, Sutton-McDowall M L, Gilchrist R B, Thompson J G. Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM. Reproduction Fertility and Development, 2011, 23(4): 576-584.

[70]Gilchrist R B, Lane M, Thompson J G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update, 2008, 14(2): 159-177.

[71]McKenzie L J, Pangas S A, Carson S A, Kovanci E, Cisneros P, Buster J E, Amato P, Matzuk M M. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction, 2004, 19(12): 2869-2874.

[72]Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, Sirard M A. Identification of potential markers of oocyte competence expressed in bovine cumulus cells cultured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biology of Reproduction, 2008, 79(2): 209-222.

[73]Cillo F, Brevini TAL, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction, 2007, 134(5): 645-650.

[74]Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Human Reproduction, 2007, 22(12): 3069-3077.

[75]Sun Q Y, Miao Y L, Schatten H. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle, 2009, 8(17): 2741-2747.

[76]Ali A, Bilodeau J F, Sirard M A. Antioxidants requirement for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology, 2003, 59(3): 939-949.

[77]Deleuze S, Goudet G. Cysteamine supplementation of in vitro maturation media: a review. Reproduction in Domesict Animals, 2010, 45 (6): 476-482.

[78]Rocha N A, Leão B C, Nogueira E, Accorsi M F, Mingoti G Z. 135 levels of reactive oxygen species(ros), apoptosis and cryoresistance of bovine embryos produced in vitro in the presence of antioxidants. Reproduction Fertility and Development, 2012, 25(1): 215.

[79]高超, 田秀芝, 张璐, 徐静, 汪锋, 卓志勇, 戴蕴平, 刘国世. 外源褪黑素对牛卵母细胞体外成熟的影响. 中国农业科学, 2011, 44(17): 3634-3640.

Gao C, Tian X Z, Zhang L, Xu J, Wang F, Zuo Z Y, Dai Y P, Liu G S. Effect of exogenous melatonin(MT) in bovine oocyte in vitro maturation. Scientia Agricultura Sinica, 2011, 44(17): 3634-3640.

[80]Zhang K, Hansen P J, Ealy A D. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction, 2010, 140(6): 815-826.

[81]Paula-Lopes F F, Boelhauve M, Habermann F A, Sinowatz F, Wolf E. leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell dependent and dependent mechanisms. Biology of Reproduction, 2007, 76(3): 532-541.

[82]Bettegowda A, Patel O V, Lee K B, Park K E, Salem M, Yao J, Ireland J J, Smith G W. Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biology of Reproduction. 2008, 79(2): 301-309.

[83]Rizos D, Ward F, Duffy P, Boland M P, Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular Reproduction and Development, 2002, 61(2): 234-248.

[84]Sutton, M L, Gilchrist R B, Thompson J G. Effects of in-vivo and in vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Human Reproduction Update, 2003, 9(1): 35-48.
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[3] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[4] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[5] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[6] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[7] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[8] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[9] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[10] JIANG ChunHui,SUN XuDong,TANG Yan,LUO ShengBin,XU Chuang,CHEN YuanYuan. Curcumin Alleviates H2O2-Induced Oxidative Stress in Bovine Mammary Epithelial Cells Via the Nrf2 Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(8): 1787-1794.
[11] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[12] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[13] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[14] YUE HuiLi,ZHANG Zhao,ZHANG HuiJie,LIU ShengPing,ZHANG Jie. The Spatial and Temporal Evolution, Regional Correlations and Economic Coordinated Development Effect for Chinese Agricultural Science and Technology Level: Taking Provincial Public Agriculture Research Institutions as an Example [J]. Scientia Agricultura Sinica, 2021, 54(24): 5251-5265.
[15] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!