Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1603-1609.doi: 10.3864/j.issn.0578-1752.2013.08.009

• PLANT PROTECTION • Previous Articles     Next Articles

StSte12 Expression Characteristics and Preliminary Screening of Its Regulatory Genes in Setosphaeria turcica

 ZHANG  Chang-Zhi, LI  Po, GU  Shou-Qin, GONG  Xiao-Dong, YANG  Yang, FAN  Yu, TIAN  Lan, ZHANG  Xiao-Yu, HAN  Jian-Min, DONG  Jin-Gao   

  1. 1.Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding 071000, Hebei
    2.Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, Hebei
  • Received:2012-12-24 Online:2013-04-15 Published:2013-02-04

Abstract: 【Objective】 The objective of this study is to locate StSte12 in genome, analyze its protein structure, confirmate its expression at different developmental stages, screen its regulatory genes which expressions were compared in Setosphaeria turcica.【Method】The location of StSte12 and its protein structures were analyzed using bioinformatics method. Its expression characteristics were detected by Western blot. The regulatory genes of StSte12 were screened according to ScSte12 of Saccharomyces cerevisiae. The binding motif of these genes was analyzed by bioinformatics. The expression level of these genes was compared between wild type strain and StSTE12 RNAi transformants using RT-PCR.【Result】The identity of StSTE12 was 105656, locating 1061747 to 1064127 of positive-strand of scaffold_13. StSte12 contained conserved domains (STE homeodomain and ZnF_C2H2 domain) and spatial structure of Ste12-like. In S. turcica appressorium period, the expression amount of StSTE12 was the largest. Some regulatory genes of StSte12 were screened, in which the binding motif combined with StSte12 was T\C GAAAC A\G. The expression level of StKAR5 in wild type strains was lager than that in StSTE12 RNAi transformants, the level of StBEM2, StBUD8, and StCHS7 were opposite to StKAR5, whereas that of StRAX2 had no obvious difference. 【Conclusion】 StSte12 has DNA binding domain and spatial structure belongs to Ste12-like Transcription factors. And it plays an important role in appressorium development of S. turcica. Some regulatory genes of StSte12 were screened, in which the binding motif was T\C GAAAC A\G, and which was regulated by StSte12.

Key words: Setosphaeria turcica , transcription factor , StSte12 , regulatory gene

[1]Romeis T. Protein kinases in the plant defence response. Current Opinion in Plant Biology, 2001, 4: 407-414.

[2]Lengeler K B, Davidson R C, D’souza C, Harashima T, Shen W C, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 2000, 64(4): 746-785.

[3]Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31: 137-152.

[4]Rispail N, Di Pietro A. The homeodomain transcription factor Ste12 Connecting fungal MAPK signalling to plant pathogenicity. Communicative and Integrative Biology, 2010, 3(4): 327-332.

[5]Zeitlinger J, Simon I, Harbison C T, Hannett N M, Volkert T L, Fink G R, Young R A. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell, 2003, 113: 395-404.

[6]Pitoniak A, Birkaya B, Dionne H M, Vadaie N, Cullen P J. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Molecular Biology of the Cell, 2009, 20: 3101-3114.

[7]Park G, Xue C, Zheng L, Lam S, Xu J R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interaction, 2002, 15(3): 183-192.

[8]Rispail N, Di Pietro A. Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Molecular Plant-Microbe Interaction, 2009, 22(7): 830-839.

[9]Deng F, Allen T D, Nuss D L. Ste12 transcription factor homologue CpSTE12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryotic Cell, 2007, 6(2): 235-244.

[10]Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Molecular Plant Pathology, 2010, 11(1): 105-119.

[11]Cho Y, Kim K H, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell T K, Lawrence C B. Identi?cation of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Molecular Microbiology, 2009, 72(6): 1316-1333.

[12]Wong Sak Hoi J, Herbert C, Bacha N, O'Connell R, Lafitte C, Borderies G, Rossignol M, Rougé P, Dumas B. Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Molecular Microbiology, 2007, 64(1): 68-82.

[13]Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Molecular Plant-Microbe Interaction, 2003, 16(4): 315-325.

[14]Madhani H D, Galitski T, Lander E S, Fink G R. Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12530-12535.

[15]Ren B, Robert F, Wyrick J J, Aparicio O, Jennings E G, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert T L, Wilson C J, Bell S P, Young R A. Genome-wide location and function of DNA binding proteins. Science, 2000, 290(5500): 2306-2309.

[16]Errede B, Ammerer G. STE12, a protein involved in cell-type-speci?c transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes and Development, 1989, 3: 1349-1361.

[17]吴敏, 谷守芹, 李坡, 王梅娟, 张长志, 范永山, 韩建民, 董金皋. 玉米大斑病菌转录因子StSte12的活性及其对酵母生长的功能互补分析. 中国农业科学, 2012, 45(16): 3281-3287.

Wu M, Gu S Q, Li P, Wang M J, Zhang C Z, Fan Y S, Han J M, Dong J G. Transcription activity of a transcription factor StSte12 from Setosphaeria turcica and function analysis through yeast complementation. Scientia Agricultura Sinica, 2012, 45(16): 3281-3287. (in Chinese)

[18]杨鹏雅, 李开绵, 周建国, 王文泉. 蓖麻WRKY基因的电子克隆及其生物信息学分析. 现代农业科学, 2009, 16(5): 22-25.

Yang P Y, Li K M, Zhou J G, Wang W Q. Identification and bioinformatical analysis of novel WRKY gene from Ricinus communis. Modern Agricultural Sciences, 2009, 16(5): 22-25. (in Chinese)

[19]武雪, 黄晓丽, 王喆之. 葡萄乙醇脱氢酶基因Ⅲ的电子克隆及生物信息学分析. 生物技术通报, 2009(5): 71-75.

Wu X, Huang X L, Wang Z Z. Electronic cloning and characterizations of ADH Ⅲ gene from Vitis vinifera using bioinformatics tools. Biotechnology Bulletin, 2009(5): 71-75. (in Chinese)

[20]Odorico M, Pellequer J L. BEPITOPE: Predicting the location of continuous epitopes and patterns in proteins. Journal of Molecular Recognition, 2003, 16(1): 20-22.

[21]Wang Y S, Pi L Y, Chen X, Chakrabarty P K, Jiang J, De Leon A L, G Z Liu, Li L, Benny U, Oard J, Ronald P C, Song W Y. Rice XA21 binding protein 3 is an ubiquitin ligase required for full Xa21- mediated disease resistance. The Plant Cell, 2006, 18: 3635-3646.

[22]Kamalakaran S, Radhakrishnan S K, Beck W T. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. The Journal of Biological Chemistry, 2005, 280(22): 21491-21497.

[23]Kel A E, Kel-Margoulis O V, Farnham P J, Bartley S M, Wingender E, Zhang M Q. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. Journal of Molecular Biology, 2001, 309: 99-120.

[24]Ramirez-Parra E, Fründt C, Gutierrez C. A genome-wide identification of E2F-regulated genes in Arabidopsis. The Plant Journal, 2003, 33: 801-811.

[25]Olson K A, Nelson C, Tai G, Hung W, Yong C, Astell C, Sadowski I. Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Molecular and Cellular Biology, 2000, 20(12): 4199-4209.

[26]Casamayor A, Snyder M. Bud-site selection and cell polarity in budding yeast. Current Opinion in Microbioogy, 2002, 5(2): 179-186.
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[4] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[5] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[6] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[7] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[8] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[9] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[10] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[11] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[12] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[13] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[14] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[15] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!