Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (24): 5024-5031.doi: 10.3864/j.issn.0578-1752.2012.24.007

• PLANT PROTECTION • Previous Articles     Next Articles

Labeling Bacillus pumillus with Green Fluorescent Protein (GFP) and Its Colonization in Rice Seedlings

 SHEN  Xin-Qian, LIU  Tong, HU  Xiao-Lu, GU  Zhen-Fang, CHEN  Yun-Peng   

  1. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240
  • Received:2012-05-07 Online:2012-12-15 Published:2012-08-21

Abstract: 【Objective】 The objective of this study is to investigate bacterial colonization in rice seedlings by GFP-labeled Bacillus pumilus DX01 and lay a solid foundation for the application of phytopathogenic biocontrol. 【Method】 Genetically stable mutants of B. pumilus DX01 with a strong GFP expression were identified from the GFP-labeled Tn5 insertion library and used for tracing the bacterial colonization in rice seedlings. 【Result】 A total of 1 467 mutants were subjected to qualitative and quantitative analyses of GFP expression by using fluorescence microplate reader, fluorescence activating cell sorter and fluorescent microscopy, and eventually 8 mutants with significantly enhanced GFP expression were identified. Meanwhile, the copy numbers of exogenous DNA integration in the genome of these mutants were detected. The GFP-tagged bacterial cells that released into the rhizosphere of rice seedlings could survive for more than 15 days. Furthermore, decrease of the B. pumilus bacterial cells in undisinfected soils showed more slowly compared with corresponding sterile soils. 【Conclusion】 B. pumilus mainly locates in root hair region and later root branch. Meanwhile, the bacterial film formed on rice root surface was also confirmed. B. pumilus can invade plant through the wound of roots or by young root hairs, and they distribute mostly in root cortex cells and intercellular spaces of cortical layer. The marked bacteria were often found in the vascular bundle of rice seedlings. In conclusion, B. pumilus displayed a good colonization ability in the rhizosphere soils of rice seedlings.

Key words: Oryza sativa , Bacillus pumillus , Tn5 transposition , green fluorescent protein , colonization

[1]Bottone E J, Peluso R W. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: Preliminary report. Journal of Medical Microbiology, 2003, 52(1): 69-74.

[2]Sun X B, Chen Y P, Wu C R, Yang G X, Guo B, Shen D L. Functional evaluation of a novel constitutive promoter F1 of Bacillus pumilus, as a rice epiphytic strain, and construction of an efficient expression and secretion system under the control of F1. Biotechnology Letters, 2006, 28(13): 979-985.

[3]Danhorn T, Fuqua C. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 2007, 61: 401-422.

[4]Trifonova R, Postma J, Schilder M T, van Elsas J D. Microbial enrichment of a novel growing substrate and its effect on plant growth. Microbial Ecology, 2009, 58(3): 632-641.

[5]Raupach G S, Kloepper J W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 1998, 88(11): 1158-1164.

[6]Berg G. Plant-microbe interactions promoting plant growth and health: perspective for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 2009, 84: 11-18.

[7]March J C, Rao G, Bentley W E. Biotechnological applications of green fluorescent protein. Applied Microbiology and Biotechnology, 2003, 62(4): 303-315.

[8]Larrainzar E, O'Gara F, Morrissey J P. Applications of autofluorescent proteins for in situ studies in microbial ecology. Annual Review of Microbiology, 2005, 59: 257-277.

[9]Pinheiro L B, Gibbs M D, Vesey G, Smith J J, Bergquist P L. Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene. Applied Microbiology and Biotechnology, 2008, 77(6): 1287-1295.

[10]Kaltwasser M, Wiegert T, Schumann W. Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Applied and Environmental Microbiology, 2002, 68(5): 2624-2628.

[11]Chen Y P, Yan J, Yang M J, Wang J W, Shen D L. Expression of green fluorescent protein in Bacillus brevis under the control of a novel constitutive promoter F1 and insertion mutagenesis of F1 in Escherichia coli DH5α. FEMS Microbiology Letters, 2003, 229(1): 111-117.

[12]Timmusk S, Grantcharova N, Wagner E G H. Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 2005, 71(11): 7292-7300.

[13]Olubajo B, Bacon C W. Electrotransformation of Bacillus mojavensis with fluorescent protein markers. Journal of Microbiological Methods, 2008, 74(2/3): 102-105.

[14]Fan B, Chen X H, Budiharjo A, Bleiss W, Vater J, Borriss R. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of Biotechnology, 2011, 151(4): 303-311.

[15]Ito M, Kim Y G, Tsuji H, Kiwaki M, Nomoto K, Tanaka R, Okada N, Danbara H. A practical random mutagenesis system for probiotic Lactobacillus casei using Tn5 transposition complexes. Journal of Applied Microbiology, 2010, 109(2): 657-666.

[16]Sant'Anna F H, Andrade D S, Trentini D B, Weber S S, Schrank I S. Tools for genetic manipulation of the plant growth-promoting bacterium Azospirillum amazonense. BMC Microbiology, 2011, 11: 107-115.

[17]沈新迁, 胡晓璐, 刘  通, 孙文良, 陈云鹏. GFP标记的短小芽孢杆菌 (Bacillus pumilus) 转座突变株的构建初探. 上海交通大学学报: 农业科学版, 2012, 30(4): 15-20.

Shen X Q, Hu X L, Liu T, Sun W L, Chen Y P. Construction of GFP-labeled Tn5 insertion mutants of Bacillus pumilus and gfp expression analysis. Journal of Shanghai Jiaotong University: Agricultural Science, 2012, 30(4): 15-20. (in Chinese)

[18]Golan A, Kerem Z, Tun O M, Luzzatto T, Lipsky A, Yedidia I. Combining flow cytometry and gfp reporter gene for quantitative evaluation of Pectpbacterium carotovorum ssp. carotovorum in Ornithogalum dubium plantlets. Journal of Applied Microbiology, 2010, 108(4): 1136-1144.

[19]Han S W, Park C J, Lee S W, Ronald P C. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta. BMC Microbiology, 2008, 8: 164-173.

[20]Unge A, Tombolini R, Molbak L, Jansson J K. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dualgfp-luxAB marker system. Applied and Environmental Microbiology, 1999, 65(2): 813-821.

[21]Lamb T G, Tonkyn D W, Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Canadian Journal of Microbiology, 1996, 42(11): 1112-1120.

[22]Miao Y X, Zhou J, Chen C C, Shen D L, Song W, Feng Y J. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice. Current Microbiology, 2008, 57(6): 547-551.

[23]Zhang X, Li E, Xiong X L, Shen D L, Feng Y J. Colonization of endophyte Pantoea agglomerans YS19 on host rice, with formation of multicellular symplasmata. World Journal of Microbiology and Biotechnology, 2010, 26 (9): 1667-1673.
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[4] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[5] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[6] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[7] YinHua MA,KaiQin MO,Lu LIU,PingFang LI,ChenZhong JIN,Fang YANG. Effect of Overexpression of OsRRK1 Gene on Rice Leaf Development [J]. Scientia Agricultura Sinica, 2021, 54(5): 877-886.
[8] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[9] XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra [J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
[10] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[11] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[12] LIN Xiao,SUN ChuanRu,WANG CaiXia,LIAN Sen,DONG XiangLi,LI BaoHua. Epidemic Factors Affecting the Infection and Occurrence of Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(11): 2333-2342.
[13] REN ZhiJie,LI Qian,SUN YuJia,KONG DongDong,LIU LiangYu,HOU CongCong,LI LeGong. OsCSC11 Mediates Dry-Hot Wind/Drought-Induced Ca2+ Signal to Regulate Stamen Development in Rice [J]. Scientia Agricultura Sinica, 2021, 54(10): 2039-2052.
[14] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[15] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!