Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (24): 5013-5023.doi: 10.3864/j.issn.0578-1752.2012.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm

 HAN  De-Jun, ZHANG  Pei-Yu, WANG  Qi-Lin, ZENG  Qing-Dong, WU  Jian-Hui, ZHOU  Xin-Li, WANG  Xiao-Jie, HUANG  Li-Li, KANG  Zhen-Sheng   

  1. 1.State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi
    2.College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    3.College of Plant Protection, Northwest A&F University,  Yangling 712100, Shaanxi
  • Received:2012-05-10 Online:2012-12-15 Published:2012-08-09

Abstract: 【Objective】The objective of this study is to search new resistance sources and build evaluation system, and to provide a theological basis for breeding for disease resistance stripe rust of wheat. 【Method】 A total of 1 980 wheat landraces and foreign germplasms, which had not been widely used in China, were evaluated for resistance to stripe rust at seedling stage in greenhouse with 4 races of Puccinia triticina, and on adult plants under field conditions in Yangling and Tianshui, respectively, during 2008-2011. The selected resistant sources were detected with the known DNA markers linked to rust resistance genes Yr5, Yr9, Yr10, Yr15, Yr18 and Yr26.【Result】A selection of 50 resistant entries were screened in both artificial nursery with mixed races at Yangling and natural nursery at Tianshui, including 8 entries which had seedling resistance and 42 entries which had adult plant resistance. Combined with the resistance spectra and the detection of Yr gene markers, 6 entries possibly carried Yr9, 2 entries possibly carried Yr10, 21 entries possibly carried Yr18 in the resistant 50 entries. There was no indication of Yr5, Yr15 and Yr26 in any selected resistant entries. Six materials including Pindong34 and Qingchun39 displayed high or very high levels of resistance, which might carry uncharacterised and full compatibility at the seedling stage the new rust resistance Yr.【Conclusion】An effective method was established for identification and evolution of resistance to stripe rust, and 50 wheat germplasms were searched out with polygenic resistant characters. These resistant sources can be used in wheat breeding program for resistance to the disease.

Key words: wheat , wheat stripe rust , resistant germplasm , gene detection

[1]Hovmøller M S, Sørensen C K, Walter S, Justesen A F. Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology, 2011, 49(1): 197-217.

[2]Line R F. Stripe rust of wheat and barley in North America: A retrospective historical review. Annual Review of Phytopathology, 2002, 40: 75-118.

[3]李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002: 1-29.

Li Z Q, Zeng S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 1-29. (in Chinese)

[4]Thrall P H, Laine A L, Ravensdale M, Nemri A, Dodds P N, Barrett L G, Burdon J J. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 2012, 15: 425-435.

[5]Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88(8): 896-904.

[6]Gilligan C A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 741-759.

[7]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 421-444. 

Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003: 421-444. (in Chinese)

[8]董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20(3): 78-81.

Dong Y C. Gene pool of wheat. Journal of Triticeae Crops, 2000, 20(3): 78-81. (in Chinese)

[9]Xia X C, Li Z F, Li G Q, Singh R P. Stripe rust resistance in Chinese bread wheat cultivars and lines//Buck H T. Wheat Production in Stressed Environments, 2007: 77-82.

[10]Wan A M, Chen X M, He Z H. Wheat stripe rust in China. Australian Journal of Agricultural Research, 2007, 58: 605-619.

[11]Zeng S M, Luo Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Disease, 2006, 90(8): 980-988.

[12]Chen W Q, Wu L R, Liu T G, Xu S C, Jin S L, Peng Y L, Wang B T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 2009, 93: 1093-1101.

[13]韩德俊, 王琪琳, 张  立, 魏国荣, 曾庆东, 赵  杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种 (系) 抗条锈病性评价. 中国农业科学, 2010, 43(14): 2889-2896.

Han D J, Wang Q L, Zhang L, Wei G R, Zeng Q D, Zhao J, Wang X J, Huang L L, Kang Z S. Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China and the middle and lower reaches of Changjiang River epidemic area. Scientia Agricultura Sinica, 2010, 43(14): 2889-2896. (in Chinese)

[14]Kang Z S, Zhao J, Han D J, Zhang H C, Wang X J, Wang C F, Han Q M, Guo J, Huang L L. Status of wheat rust research and control in China//BGRI 2010 Technical Workshop, St Petersburg, Russia, 2010: 1-21.

[15]Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Disease, 2010, 94(9): 1163.

[16]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44(11): 2193-2215.

He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Scientia Agricultura Sinica, 2011, 44(11): 2193-2215. (in Chinese)

[17]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.

[18]McNeal F H, Konzak C F, Smith E P, Tate W S, Russell T S. A uniform system for recording and processing cereal research data//Agricultural Research Service Bulletin. Washington: United States Department of Agriculture, 1971: 34-121.

[19]Roelfs S A P, Singh R P, Saari E E. Rust Diseases of Wheat. Mexico: CIMMYT, 1992.

[20]Chen X M, Soria M A, Yan G P, Sun J, Dubcovsky J. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Science, 2003, 43: 2058-2064.

[21]Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159: 249-258.

[22]Smith P H, Koebner R M D, Boyd L A. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theoretical and Applied Genetics, 2002, 104: 1278-1282.

[23]Murphy L R, Santra D, Kidwell K, Yan G P, Chen X M, Campbell K  G. Linkage maps of wheat stripe rust resistance genes Yr5 and Yr15 for use in marker-assisted selection. Crop Science, 2009, 49: 1786-1790.

[24]曾庆东, 吴建辉, 王琪琳, 韩德俊, 康振生. 持久抗病基因Yr18  在中国小麦抗条锈育种中的应用. 麦类作物学报, 2012, 32(1): 13-17.

Zeng Q D, Wu J H, Wang Q L, Han D J, Kang Z S. Application of durable resistance gene Yr18 to stripe rust in Chinese wheat breeding. Journal of Triticeae Crops, 2012, 32(1): 13-17. (in Chinese)

[25]Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119: 889-898.

[26]Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008, 159: 359-366.

[27]Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Science, 2002, 42: 2088-2091.

[28]Fabre F, Rousseau E, Mailleret L, Moury B. Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 2012, 193: 1064-1075.

[29]魏国荣, 韩德俊, 赵  杰, 王晓杰, 王琪琳, 黄丽丽, 康振生. 小麦成株期抗条锈病种质筛选与评价. 麦类作物学报, 2011, 31(2): 376-381.

Wei G R, Han D J, Zhao J, Wang X J, Wang Q L, Huang L L, Kang Z S. Identification and evaluation of adult plant resistance to stripe rust in wheat germplasms. Journal of Triticeae Crops, 2011, 31(2): 376-381. (in Chinese)

[30]Li Z F, Xia X C, Zhou X C, Niu Y C, He Z H, Zhang Y, Li G Q, Wan A M, Wang D S, Chen X M, Lu Q L, Singh R P. Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Plant Disease, 2006, 90(10): 1302-1312.

[31]路端谊, 袁文焕, 李剑雁, 李登科, 于孝如. 小麦品种资源抗条锈病的研究. 中国农业科学, 1980, 13(1): 15-22.

Lu D Y, Yuan W H, Li J Y, Li D K, Yu X R. Studies on stripe rust resistance of the cultivar resources of wheat. Scientia Agricultura Sinica, 1980, 13(1): 15-22. (in Chinese)

[32]Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and Applied Genetics, 2011, 123: 143-157.

[33]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363.

[34]Browder L E. Parasite host: environment specificity in the cereal rusts. Annual Review of Phytopathology, 1985, 23: 201-222.

[35]Walker J C. Use of environmental factors in screening for disease resistance. Annual Review of Phytopathology, 1965, 3: 197-208.

[36]李峰奇, 韩德俊, 魏国荣, 曾庆东, 黄丽丽, 康振生. 黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测. 中国农业科学, 2008, 41(10): 3060-3069.

Li F Q, Han D J, Wei G R, Zeng Q D, Huang L L, Kang Z S. Molecular detection of stripe rust resistant genes in 126 winter wheat varieties from the huanghuai wheat region. Scientia Agricultura Sinica, 2008, 41(10): 3060-3069. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!