Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4931-4938.doi: 10.3864/j.issn.0578-1752.2012.23.021

• RESEARCH NOTES • Previous Articles     Next Articles

Molecular Maker Screen for High Oleic Acid in Space Flight Mutant Brassica napus

 LIU  Lie-Zhao, WANG  Xin-Na, YAN  Xing-Ying, WANG  Rui, XU  Xin-Fu, LU  Kun, LI  Jia-Na   

  1. College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716
  • Received:2012-08-09 Online:2012-12-01 Published:2012-10-12

Abstract: 【Objective】 A study was conducted to analyze the mutant locus and screen SSR markers tightly linked to high oleic acid in the high oleic acid space flight mutant derived F2 population by using the SSR markers beside FAD2 gene. 【Method】 The F2 population was derived from the cross of yellow seeded low oleic acid/high linolenic acid self line 10L421 and space flight mutant high oleic acid/ low linolenic acid self line 10L422. Totally, 148 SSR markers beside FAD2 genes by 100 kb region in both sides from chromosomes A05, A01, C05 and C01 were analyzed in the two parents, high and low oleic acid bulks and F2 population. The parents and F2 plants oleic acid were analyzed by GC. Marker and oleic acid relationship were analyzed by single marker test.【Result】There were 36 of the SSR markers were polymorphic among the two parents, ten SSR markers showed a cosegregation in the high and low oleic acid extreme plants. The SSR markers beside FAD2 gene in A05 and A01 were significantly related to the oleic acid and accounted for 31.1% and 29.4% of the oleic acid variation by single marker analysis. 【Conclusion】 The ANOVA and single marker analysis indicated that the FAD2 genes in A05 and A01 are the major loci responsible for the oleic acid variation in this space flight mutant derived population, which means that the double recessive mutation of FAD2 genes in A05 and A01 lead to the high oleic acid content of the space flight mutant.

Key words: Brassica napus, molecular marker, oleic acid, FAD2

CLC Number: 

  • null
[1]Chang N W, Huang P C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids, 1998, 33(5): 481-487.

[2]Petukhov I, Malcolmson L J, Przybylski R, Armstrong L. Frying performance of genetically modified canola oils. Journal of the American Oil Chemists Society, 1999, 76(5): 627-632.

[3]Warner K, Mounts T L. Frying stability of soybean and canola oils with modified fatty acid compositions. Journal of the American Oil Chemists Society, 1993, 60: 983-988.

[4]Stoutjesdijk P A, Hurlestone C, Singh S P, Green A G. High oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous D12-desaturases. Biochemical Society Transactions, 2000, 28: 938-940.

[5]Piazza G J, Foglia T A. Rapeseed oil for oleochemical uses. Europe Jounal of Lipid Science and Technology, 2001, 103: 405-454.

[6]Laga B, Seurinck J, Verhoye T, Lambert B. Molecular breeding for high oleic and low linolenic fatty acid composition in Brassica napus. Pflanzenschutz-Nachrichten Bayer, 2004, 1: 87-92.

[7]Arondel V, Lemieux B, Hwang I, Gibson S, Goodman H M, Somerville C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science, 1992, 258: 1353-1355.

[8]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. The Plant Cell, 1994, 6, 147-158.

[9]Guan M, Li X, Guan C Y. Microarray analysis of differentially expressed genes between Brassica napus strains with high- and low-oleic acid contents. Plant Cell Report, 2012, 31: 929-943.

[10]Tanhuanpää P, Vilkki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Molecular Breeding, 1998, 4: 543-550.

[11]Jung J H, Kim H, Go Y S, Lee S B, Hur C G, Kim H U, Suh M C. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Report, 2011, 30: 1881-1892.

[12]Peng Q, Hu Y, Wei R, Zhang Y, Guan C Y, Ruan Y, Liu C L. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Report, 2010, 29(4): 317-325.

[13]Smooker A M, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theoretical and Applied Genetics, 2011, 122: 1075-1090.

[14]Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs, Lydiate D J , Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics, 1997, 94: 583-591.

[15]Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2000, 101: 897-901.

[16]Sharma R, Aggarwal R A K, Kumar R, Mohapatra T, Sharma R P. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome, 2002, 45(3): 467-472.

[17]张洁夫, 戚存扣, 浦惠明, 陈  松, 陈  锋, 高建芹, 陈新军, 顾  慧, 傅寿仲. 甘蓝型油菜主要脂肪酸组成的QTL定位. 作物学报, 2008, 34(1): 54-60.

Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. QTL identification for fatty acid content in rapeseed (Brassica napus L.) Acta Agronomica Sinica, 2008, 34(1): 54-60. (in Chinese)

[18]Martin W S, Lucas D C, Neves K F, Bertioli D J. WebSat-a web software for microsatellite marker development. Bioinformation, 2009, 3: 282-283.

[19]索文龙, 戚存扣. 甘蓝型油菜油酸含量的主基因+多基因遗传分析. 江苏农业学报, 2007, 23(5): 396-400.

Suo W L, Qi C K. Major gene plus poly-gene inheritance of oleic acid content in Brassica napus L.. Jiangsu Journal of Agricultural Science, 2007, 23(5): 396-400. (in Chinese)

[20]Burns M J, Barnes S R, Bowman J G, Clarke M H, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: Seed oil content and fatty acid composition. Heredity, 2003, 90(1): 39-48.

[21]Lionneton E, Aubert G, Ochatt S, Merach O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theoretical and Applied Genetics, 2004, 109 (4): 792-799.

[22]Hu X Y, Sullivan-Gilbert M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics, 2006, 113(3): 497-507.

[23]张洁夫, 戚存扣, 浦惠明, 陈  松, 陈  锋, 陈新军, 高建芹, 傅寿仲. 甘蓝型油菜主要脂肪酸的主基因+多基因遗传分析. 中国油料作物学报, 2007, 29(4): 359-364.

Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Chen X J, Gao J Q, Fu S Z. Genetic analysis of fatty acid composition in rapeseed using mixed model of major gene and polygen. Chinese Journal of Oil Crop Sciences, 2007, 29(4): 359-364. (in Chinese)

[24]Zhao J Y, Dimov Z, Becker H C, Ecke W, Möllers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Molecular Breeding, 2008, 21(1): 115-125.

[25]陈  伟, 范楚川, 钦  洁, 郭振华, 傅廷栋, 周永明. 分子标记辅助选择改良甘蓝型油菜种子油酸和亚麻酸含量. 分子植物育种, 2011, 9(2): 190-197.

Chen W, Fan C C, Qin J, Guo Z H, Fu T D, Zhou Y M. Genetic improvement of oleic acid and linoleinic acid content through marker- assisted selection in Brassica napus seed. Molecular Plant Breeding, 2011, 9(2): 190-197. (in Chinese)

[26]Yang Q Y, Fan C C, Guo Z H, Qin J, Wu J Z, Li Q Y, Fu T D, Zhou Y M. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 2012, 125: 792-799.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[4] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[5] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[6] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[7] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[8] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[9] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[10] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[11] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[12] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[13] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[14] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[15] CAO XiaoDong,LIU ZiGang,MI WenBo,XU ChunMei,ZOU Ya,XU MingXia,ZHENG GuoQiang,FANG XinLing,CUI XiaoRu,DONG XiaoYun,MI Chao,CHEN QiXian. Analysis on the Adaptability of Northward Planting of Brassica napus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4164-4176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!