Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (19): 3965-3970.doi: 10.3864/j.issn.0578-1752.2012.19.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Hyperosmotic Stress on the Growth, Development and STK1 Expression of Setosphaeria turcica

 WANG  Mei-Juan, LI  Po, WU  Min, FAN  Yong-Shan, GU  Shou-Qin, DONG  Jin-Gao   

  1. 1.河北农业大学生命科学学院真菌毒素与植物分子病理学实验室,河北保定 071001
    2.河北省农林科学院植物保护研究所,河北保定 071000
    3.唐山师范学院生命科学系,河北唐山 063000
  • Received:2012-01-05 Online:2012-10-01 Published:2012-04-19

Abstract: 【Objective】The objective of this study is to measure the effect of hyperosmotic stress on the growth and development of Setosphaeria turcica, to analyze whether or not the glycerol is one of the compatible solutes, and to detect the expression characteristic of STK1 when the pathogen is cultured under hyperosmotic stress. 【Method】 The growth and development of S. turcica, which cultured under 2 different hyperosmotic stresses, were observed. By analyzing the change of glycerol content in mycelium cells, it was confirmed that glycerol was one of the compatible solutes. The expression characteristic of STK1 was detected using semiquantitative RT-PCR method.【Result】Isotonic solution concentration of hyphal cells of S. turcica was 0.78 mol•L-1. The colony color changed distinctly under hyperosmotic stress. The colony cultured on PDA medium containing 1 mol•L-1 NaCl was reddish-brown in colour, the growth rate of the colony was repressed remarkably, cultured on PDA medium containing 1 mol•L-1 NaCl showed strong inhibition. The condensation was observed in the protoplasts when cultured in 1 mol•L-1 NaCl treatment. With the increase of hyperosmotic stress time and compatible solute concentration, glycerol content increased evidently. The expression level of STK1 enhanced distinctly within 48 hours under hyperosmotic stress.【Conclusion】Colony growth rate was inhibited, colony color turned obviously, protoplast became concentrated, some mycelium cells enlarged and changed into globosed under hyperosmotic stress in S. turcica. Glycerol was one of the compatible solutes in the mycelium cells of S. turcica. STK1 took part in regulating hyperosmotic stress responses in S. turcica.

Key words: Setosphaeria turcica, hyperosmotic stress, glycerol, STK1

[1]白金铠, 宋佐衡, 陈  捷, 梁景颐, 刘伟成, 吕国忠, 赵廷昌, 周永力. 玉米病害的病菌变异与抗病品种选育. 玉米科学, 1994, 2(1): 67-72.

Bai J K, Song Z H, Chen J, Liang J Y, Liu W C, Lü G Z, Zhao T C, Zhou Y L. A review of the pathogenic varition of corn disease and breeding of resistant cultivars. Maize Science, 1994, 2(1): 67-72. (in Chinese)

[2]刘国胜, 董金皋, 邓福友, 郭爱国, 张凤国, 臧漫辉. 中国玉米大斑病菌生理分化及新命名法的初步研究. 植物病理学报, 1996, 26(4): 305-310.

Liu G S, Dong J G, Deng F Y, Guo A G, Zhang F G, Zang M H. Preliminary study on physiologic specialization and new nomenclature for Exserohilum turcicum of corn in China. Acta Phytopathologica Sinica, 1996, 26(4): 305-310. (in Chinese)

[3]Dong J G, Fan Y S, Gui X M, An X L, Ma J F, Dong Z P. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in Northern China. American Journal of Agricultural and Biological Sciences, 2008, 3(1): 389-398.

[4]范永山, 刘颖超, 谷守芹, 桂秀梅, 董金皋. 植物病原真菌的MAPK 基因及其功能. 微生物学报, 2004, 44(4): 547-551.

Fan Y S, Liu Y C, Gu S Q, Gui X M, Dong J G. Mitogen activated protein kinase genes and its functions in phytopathogenic fungus. Acta Microbiologica Sinica, 2004, 44(4): 547-551. (in Chinese)

[5]Herskowitz I. MAP kinase pathways in yeast: For mating and more. Cell, 1995, 80(2): 187-197.

[6]Nakagami H, Pitzschke A , Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends in Plant Science, 2005, 10(7): 339-346.

[7]Gustin M C, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 1998, 62: 1264-1300.

[8]Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31: 137-152.

[9]Idnurm A, Howlett B J. Pathogenicity genes of phytopathogenic fungi. Molecular Plant Pathology, 2001, 2(4): 241-255.

[10]Dixon K P, Xu J R, Smirnoff N, Talbot N J. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and Appressorium-mediated plant infection by Magnaporthe grisea. The Plant Cell, 1999, 11: 2045-2058.

[11]Kawasaki L, Sánchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Molecular Microbiology, 2002, 45(4): 1153-1163.

[12]Beever R E, Laracy E P. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. Journal of Bacteriology, 1986, 168(3): 1358-1365.

[13]张  鑫, 曹志艳, 刘士伟, 郭丽媛, 董金皋. 玉米大斑病菌聚酮体合成酶基因StPKS 功能分析. 中国农业科学, 2011, 44(8): 1603-1609.

Zhang X, Cao Z Y, Liu S W, Guo L Y, Dong J G. Functional analysis of polyketide synthase gene StPKS in Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(8): 1603-1609. (in Chinese)

[14]Brewster J L, de Valoir T, Dwyer N D, Winter E, Gustin M C. An osmosensing signal transduction pathway in yeast. Science, 1993, 259: 1760-1763.

[15]Hohmann S, Krantz M, Nordlander B. Yeast osmoregulation. Methods in Enzymology, 2007, 428: 29-45.

[16]Adler L, Blomberg A, Nilsson A. Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 1985, 162: 300-306.

[17]Alonso-Monge R, Carvaihlo S, Nombela C, Rial E, Pla J. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology, 2009, 155(2): 413-423.

[18]Ma Y, Qiao J J, Liu W, Wan Z, Wang X H, Calderone R, Li R Y. The Sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis. Infection and Immunity, 2008, 76(4): 1695-1701.

[19]Davis D J, Burlak C, Money N P. Osmotic pressure of fungal compatible osmolytes. Mycological Research, 2000, 104(7): 800-804.

[20]Shankhdhar D, Shankhdhar S C, Pant R C. Osmoprotectants: an overview. Physiology and Molecular Biology of Plants, 2004, 10: 167-180.

[21]Kogej T, Stein M, Volkmann M, Gorbushina A A, Galinski E A, Gunde-Cimerman N. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology, 2007, 153: 4261-4273.

[22]Jose C S, Monge R A, Perez-Diaz R, Pla J, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. Journal of Bacteriology, 1996, 178(19): 5850-5852.

[23]Blomberg A, Adler L. Physiology of osmotolerance in fungi. Advances in Microbial Physiology, 1992, 33: 145-212.

[24]Dunlap C A, Jackson M A, Saha B C. Compatible solutes of sclerotia of Mycoleptodiscus terrestris under different culture and drying conditions. Biocontrol Science and Technology, 2011, 21(1): 113-123.

[25]Beese S E, Negishi T, Levin D E. Identification of positive regulators of the yeast Fps1 glycerol channel. PLoS Genetics, 2009, 5(11): e1000738.

[26]Mollapour M, Piper P W. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis there by rendering cells resistant to acetic acid. Molecular and Cellular Biology, 2007, 27(18): 6446-6456.
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[3] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[4] GONG ChangWei,QIN YiMan,QU JinSong,WANG XueGui. Resistance Detection and Mechanism of Strawberry Botrytis cinerea to Fludioxonil in Sichuan Province [J]. Scientia Agricultura Sinica, 2018, 51(22): 4277-4287.
[5] FENG ShengZe, LIU XingChen, WANG HaiXiang, ZHAO Jie, ZHAO LiQing, ZHENG YaNan, GONG XiaoDong, HAN JianMin, GU ShouQin, DONG JinGao. Influencing Factors of Conidiospore and Expression Analysis of GATA Transcription Factor Gene Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(7): 1234-1241.
[6] ZHAO Jie, ZHAO LiQing, GONG XiaoDong, FENG ShengZe, LIU XingChen, ZHENG YaNan, LI ZhiYong, SUN HaiYue, WANG DongXue, HAN JianMin, GU ShouQin, DONG JinGao. Identification of Homeobox Transcription Factor Family in Genome-Wide and Expression Pattern Analysis of the Members in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(4): 669-678.
[7] SHEN Shen, LI ZhenYang, ZHAO YuLan, LI Pan, HAN JianMin, HAO ZhiMin, DONG JinGao. Cloning and Expression Pattern Analysis of cAMP Phosphodiesterase Coding Genes in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(16): 3135-3144.
[8] ZHANG YunFeng, ZHANG ShuHong, WU QiuYing, FAN YongShan. Effects of STK1 on Glycogen and Lipid Accumulation During the Appressorium Development of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(15): 2928-2935.
[9] GONG XiaoDong, LIU XingChen, ZHAO LiQing, ZHENG YaNan, FAN YongShan, HAN JianMin, GU ShouQin, DONG JinGao. Effect of Hyperosmotic Stress on Growth and Development of Setosphaeria turcica and Determination of Osmolytes in the Mycelium Cells of the Pathogen [J]. Scientia Agricultura Sinica, 2017, 50(10): 1922-1929.
[10] MA Shuang-xin, LIU Ning, JIA Hui, DAI Dong-qing, XU Miao-miao, CAO Zhi-yan, DONG Jin-gao. Analysis and Expression of Laccase Gene Stlac2 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2016, 49(21): 4130-4139.
[11] JIA Hui, MENG Qing-jiang, LI Zhi-yong, GONG Xiao-dong, ZANG Jin-ping, HAO Zhi-min, CAO Zhi-yan, DONG Jin-gao. Localization of Melanin Biosynthesis Enzyme Genes in the Genome and Expression Pattern Analysis of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2015, 48(14): 2767-2776.
[12] GONG Xiao-dong, WANG Yue, ZHANG Pan, FAN Yong-shan, GU Shou-qin, HAN Jian-min, DONG Jin-gao. Analysis of the Genomic Location, Protein Structure Prediction and Expression of MAPK Gene StIME2 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2015, 48(13): 2549-2558.
[13] CAO Ke-ke, LIU Ning, MA Shuang-xin, CAO Zhi-yan, LIANG Dong-xu, CHAI Jiang-ting, DONG Jin-gao. Optimization of Fermentation Condition for Laccase Production by Setosphaeria turcica Using the Response Surface Methodology and the Enzymatic Characters [J]. Scientia Agricultura Sinica, 2015, 48(11): 2165-2175.
[14] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
[15] ZHANG Chang-Zhi, LI Po, GU Shou-Qin, GONG Xiao-Dong, YANG Yang, FAN Yu, TIAN Lan, ZHANG Xiao-Yu, HAN Jian-Min, DONG Jin-Gao. StSte12 Expression Characteristics and Preliminary Screening of Its Regulatory Genes in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2013, 46(8): 1603-1609.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!