Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (18): 3773-3781.doi: 10.3864/j.issn.0578-1752.2012.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Comparison of Soil Organic Carbon, Microbial Diversity and Enzyme Activity of Wetlands and Rice Paddies in Jingjiang Area of Hubei, China

 JIN  Zhen-Jiang, TAI  Ji-Cheng, PAN  Gen-Xing, LI  Lian-Qing, SONG  Xiang-Yun, XIE  Tian, LIU  Xiao-Yu, WANG  Dan   

  1. 1.南京农业大学农业资源与生态环境研究所,南京 210095
    2.桂林理工大学环境科学与工程学院,广西桂林541004
    3.内蒙古民族大学农学院,内蒙古通辽028042
  • Received:2012-01-18 Online:2012-09-15 Published:2012-05-29

Abstract: 【Objective】The purpose of this study is to, by means of a comparative analysis of soil organic carbon (SOC), microbial community abundance and soil enzyme activity, look into the relationship between SOC and microbial abundance/activity after rice cultivation of wetland soil for several decades. 【Method】 The topsoil (0-20 cm) samples of uncultivated wetland and paddy field were collected in Jingjiang area, Hubei, China. Contents of SOC, soil microbial biomass carbon (SMB-C) and microbial community abundance were analyzed using wet digestion with potassium dichromate, chloroform fumigation-extraction, dilute plate incubation counting and PCR-DGGE assays respectively. Microbial activity was examed using soil enzyme assays as well. 【Result】 The results showed that the SOC content increased by 55.42%, in accordance to the increases of total N and alkali-hydrolyzable N in rice paddies compared to wetland. SMB-C was found 180% higher in rice paddies than in wetlands. There was no significant difference in abundance of a single microbial community of bacterial, fungi, actionmycetes and autotrophic azotobacter, neither in diversity of bacterial and fungi between wetlands and rice paddies. However, microbial enzyme activities of invertase, urease and alkaline phosphatase was enhanced by 89%, 70% and 72%, respectively, in rice paddy over wetlands. Statistical analysis revealed a significant correlation of SMB-C and normalized overall enzyme activity index with soil organic carbon contents, respectively. 【Conclusion】 These results indicate that the size of soil microbial biomass and microbial functional activity with enzymes were enhanced as SOC storage increased due to rice cultivation of wetlands for several decades. Therefore, SMB-C size and normalized enzyme activity could be used as indicators for soil functioning by SOC.

Key words: wetland, rice paddy, soil organic carbon, microbial diversity, DGGE, soil enzyme, soil functioning

[1]张旭辉, 李典友, 潘根兴, 李恋卿, 林  凡, 许信旺. 中国湿地土壤碳库保护与气候变化问题. 气候变化研究进展, 2008, 4(4): 202-208.

Zhang X H, Li D Y, Pan G X, Li L Q, Lin F, Xu X W. Conservation of wetland soil C stock and climate change of China. Advances in Climate Change Research, 2008, 4(4): 202-208. (in Chinese)

[2]Pan G X, Li L Q, Wu L S, Zhang X H. Storage and sequestration potential of topsoil organic carbon in China?s paddy soils. Global Change Biology, 2003, 10(1): 79-92. 

[3]Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 2009, 129(1/3): 344-348. 

[4]潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全. 地球科学进展, 2005, 20(4): 384-393.

Pan G X, Zhao Q G. Study on evolution of organic carbon stock in agricultural soils of China: Facing the challenge of global change and food security. Advances in Earth Science, 2005, 20(4): 384-393. (in Chinese)

[5]Pan G X, Zhou P, Li Z P, Smith P, Li L Q, Qiu D S, Zhang X H, Xu X B, Shen S Y, Chen X M. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems and Environment, 2009, 131(3/4): 274-280. 

[6]邱  峰. 百万亩水稻田纳入湿地保护(2011-10-28) [2012-1-12]. http://www.nb.suzhou.gov.cn/newsview.asp? id=1359

[7]李典友, 潘根兴. 长江中下游地区湿地开垦及土壤有机碳含量变化. 湿地科学, 2009, 7(2): 187-190.

Li D Y, Pan G X. Organic carbon content of soil of wetland and its change after cultivation along the mid-downstream of Yangtze River, China. Wetland Science, 2009, 7(2): 187-190. (in Chinese)

[8]林  凡, 李典友, 潘根兴, 许信旺, 张旭辉, 迟传德, 李志鹏. 皖江自然湿地土壤碳密度及其开垦为农田后的变化. 湿地科学, 2008, 6(2): 192-197.

Lin F, Li D Y, Pan G X, Xu X W, Zhang X H, Chi C D, Li Z P. Organic carbon density of soil of wetland and its change after cultivation along the Yangtze River in Anhui Province, China. Wetland Science, 2008, 6(2): 192-197. (in Chinese)

[9]彭佩钦, 张文菊, 童成立, 王小利, 蔡长安. 洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布. 水土保持学报, 2005, 19(1): 49-53.

Peng P Q, Zhang W J, Tong C L, Wang X L, Cai C A. Vertical distribution of soil organic carbon, nitrogen and microbial biomass C, N at soil profiles in wetlands of Dongting Lake floodplain. Journal of Soil and Water Conservation, 2005, 19(1): 49-53. (in Chinese)

[10]刘  娜, 王克林, 谢永宏, 杨  刚, 段亚锋. 洞庭湖湿地土壤环境及其对退田还湖方式的响应. 生态学报, 2011, 31(13): 3758-3766.

Liu N, Wang K L, Xie Y H, Yang G, Duan Y F. Characteristics of the soil environment of Dongting Lake wetlands and its response to the converting farmland to lake project. Acta Ecologica Sinica, 2011, 31(13): 3758-3766. (in Chinese)

[11]Stark C H, Condron L M, O'Callaghan M, Stewart A, Di H J. Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralization resulting from farm management history and organic matter amendments. Soil Biology and Biochemistry, 2008, 40(6): 1352-1363.

[12]潘根兴, 李恋卿, 郑聚锋, 张旭辉, 周  萍. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题. 土壤学报, 2008, 45(5): 901-914.

Pan G X, Li L Q, Zheng J F, Zhang X H, Zhou P. Perspectives on cycling and sequestraion of organic acrbon in paddy soils of China. Acta Pedologica Sinica, 2008, 45(5): 901-914. (in Chinese)

[13]邰继承, 靳振江, 崔立强, 潘根兴. 不同土地利用下湖北江汉平原湿地起源土壤有机碳组分的变化. 水土保持学报, 2011, 25(6): 124-128.

Tai J C, Jin Z J, Cui L Q, Pan G X. Change in soil organic carbon fractions with land uses in soils reclaimed from wetlands of Janghan Plain, Hubei Province. Journal of Soil and Water Conservation, 2011, 25(6): 124-128. (in Chinese)

[14]向万胜, 古汉虎. 湖北江汉平原四湖地区湿地农田土壤的养分状况及主要障碍因子. 土壤通报, 1997, 28(3): 119-120.

Xiang W S, Gu H H. Condition of nutrients of wetland and its main affect indexes in Four-lake region of Jianghan Plate, Hubei Province. Chinese Journal of Soil Science, 1997, 28(3): 119-120. (in Chinese)

[15]王学雷. 江汉平原湿地生态脆弱性评估与生态恢复. 华中师范大学学报: 自然科学版, 2001, 35(2): 237-240.

Wang X L. Evaluation on vulnerability of wetland and ecological rehabilitation of Jianghan Plain. Journal of Central China Normal University: Nature Science Edition, 2001, 25(2): 237-240. (in Chinese)

[16]李方敏, 艾天成, 饶联鹏. 四湖地区渍害稻田土壤有机质及其氧化稳定性. 长江流域资源与环境, 2003, 12(3): 293-296.

Li F M, Ai T C, Rao L P. Organic matter and its oxidabiality in waterlagged soil in Four-Lake region, Hubei Province. Resources and Envionment in the Yangtze Basin, 2003, 12(3): 293-296. (in Chinese)

[17]鲁如坤. 土壤农业化学分析. 北京: 中国农业科技出版社, 1999: 106-185.

Lu R K. Methods of Soil and Agro-chemistry Analysis. Beijing: China Agriculture Technology Press, 1999: 106-185. (in Chinese)

[18]李振高, 骆永明, 滕  应. 土壤与环境微生物研究方法. 北京: 科学出版社, 2008: 97-99.

Li Z G, Luo Y M, Teng Y. Method of Soil and Environmental Microorganisms. Beijing: Science Press, 2008: 97-99. (in Chinese)

[19]Yao S R, Merwin I A, Abawi G S, Thies J E. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biology and Biochemistry, 2006, 38(3): 587-599.

[20]Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase China reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.

[21]Hoshino Y T, Morimoto S. Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Science Plant Nutrients, 2008, 54(5): 701-710.

[22]Hill T C J, Walsh K A, Harris J A, Moffett B F. Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 2003, 43(1): 1-11.

[23]关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 275-276, 294-296, 310-312.

Guan S Y. Soil Enzymes and Their Studying Methods. Beijing: Agriculture Press, 1986: 275-276, 294-296, 310-312. (in Chinese)

[24]Meyer C K, Baer S G, Whiles M R. Ecosystem recovery across a chronosequence of restored wetlands in the Platte River valley. Ecosystems, 2008, 11(2): 193-208.

[25]黄靖宇, 宋长春, 宋艳宇, 刘德燕, 万忠梅, 廖玉静. 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响. 环境科学, 2008, 29(5): 1380-1387.

Huang J Y, Song C C, Song Y Y, Liu D Y, Wan Z M, Liao Y J. Influence of fresh water marsh tillage on microbial biomass and dissolved organic carbon and nitrogen. Environmental Science, 2008, 29(5): 1380-1387. (in Chinese)

[26]任京辰, 张平究, 潘根兴, 宋林华. 岩溶土壤的生态地球化学特征及其指示意义¬—以贵州贞丰-关岭岩溶石山地区为例. 地球科学进展, 2006, 21(5): 504-512.

Ren J C, Zhang P J, Pan G X, Song L H. Indices of eco-geochemical characteristics in a degradation reclamation sequence of soils in mountainous karst area: a case study in Zhenfeng-Guanling Region, Guizhou, China. Advances in Earth Science, 2006, 21(5): 504-512. (in Chinese)

[27]Liu D W, Liu X Y, Li L Q, Pan G X, Crowley D, Tippkötter R. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China–Ⅵ. Changes in microbial community structure and respiratory activity. Biogeosciences Discuss, 2011, 8(1): 1529-1554.

[28]毕明丽, 宇万太, 姜子绍, 马  强, 张  璐, 徐永刚. 利用PLFA方法研究不同土地利用方式对潮棕壤微生物群落结构的影响. 中国农业科学, 2010, 43(9): 1834-1842.

Bi M L, Yu W T, Jiang Z S, Ma Q, Zhang L, Xu Y G. Study on the effects of different land use patterns on microbial community structure in aquic brown soil by utilizing PLFA method. Scientia Agricultura Sinica, 2010, 43(9): 1834-1842. (in Chinese)

[29]Wu Y P, Ma B, Zhou L, Wang H Z, Xu J M, Kmmitt S, Brookes P C. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology, 2009, 43(2/3): 234-240.

[30]杨桂生, 宋长春, 宋艳宇, 侯翠翠. 三江平原小叶章湿地剖面土壤微生物活性特征. 生态学报, 2010, 30(22): 6146-6153.

Yang G S, Song C C, Song Y Y, Hou C C. Microbial activity in soils of Calamagrostis angustifolia wetlands in the Sanjiang Plain. Acta Ecologica Sinica, 2010, 30(22): 6146-6153. (in Chinese)

[31]吴俐莎, 唐  杰, 罗  强, 汤  博, 聂远洋, 王晓彤, 杨志荣, 孙  群, 冯  甦, 张  杰. 若尔盖湿地土壤酶活性和理化性质与微生物关系的研究. 土壤通报, 2012, 43(1): 52-59.

Wu L S, Tang J, Luo Q, Tang B, Nie Y Y, Wang X T, Yang Z R, Sun Q, Feng S, Zhang J. Study on the relationship between soil enzyme activities and soil physico-chemical properties with microorganism of degraded soil from Zoige Wetland. Chinese Journal of Soil Science, 2012, 43(1): 52-59. (in Chinese)

[32]王树起, 韩晓增, 乔云发, 王守宇, 许艳丽. 不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响. 水土保持学报, 2007, 21(4): 150-153,192.

Wang S Q, Han X Z, Qiao Y F, Wang S Y, Xu Y L. Characteristics of soil enzyme activity and fertility under different types of land use in wetland of Sanjiang Plain. Journal of Soil and Water Conservation, 2007, 21(4): 150-153, 192. (in Chinese)

[33]刘存歧, 陆健健, 李贺鹏. 长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性. 生态学报, 2007, 27(9): 3663-3669.

Liu C Q, Lu J J, Li H P. The landward changes of soil enzyme activities in a tidal flat wetland of the Yangtze River estuary and correlations with physicochemical factors. Acta Ecologica Sinica, 2007, 27(9): 3663-3669. (in Chinese)

[34]陆 梅, 田 昆, 张仕艳, 莫剑峰, 原海红. 不同干扰程度下高原湿地纳帕海土壤酶活性与微生物特征研究. 生态环境学报, 2010, 19(12): 2783-2788.

Lu M, Tian K, Zhang S Y, Mo J F, Yuan H H. Study on the soil enzyme activities and microorganism characteristics of different human disturbances of plateau wetlands Napahai. Ecology and Environmental Sciences, 2010, 19(12): 2783-2788. (in Chinese)

[35]谭周进, 周卫军, 张杨珠, 曾希柏, 肖嫩群, 刘  强. 不同施肥制度对稻田土壤微生物的影响研究. 植物营养与肥料学报, 2007, 13(3): 430-435.

Tan Z J, Zhou W J, Zhang Y Z, Zeng X B, Xiao N Q, Liu Q. Effect of fertilization systems on microbes in the paddy soil. Plant Nutrition and Fertilizer Science, 2007, 13(3): 430-435. (in Chinese)
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[3] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[4] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[5] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[6] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[7] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[8] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[9] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[10] FengJun ZHENG,Xue WANG,Jing LI,BiSheng WANG,XiaoJun SONG,MengNi ZHANG,XuePing WU,Shuang LIU,JiLong XI,JianCheng ZHANG,YongShan LI. Effect of No-Tillage with Manure on Soil Enzyme Activities and Soil Active Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1202-1213.
[11] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[12] GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.
[13] LI JingYu,LI Qian,WU XuePing,WU HuiJun,SONG XiaoJun,ZHANG YongQing,LIU XiaoTong,DING WeiTing,ZHANG MengNi,ZHENG FengJun. Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool [J]. Scientia Agricultura Sinica, 2020, 53(18): 3729-3740.
[14] YUAN Wu,JIN ZhenJiang,CHENG YueYang,JIA YuanHang,LIANG JinTao,QIU JiangMei,PAN FuJing,LIU DeShen. Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas [J]. Scientia Agricultura Sinica, 2020, 53(14): 2897-2906.
[15] XU Meng,XU LiJun,CHENG ShuLan,FANG HuaJun,LU MingZhu,YU GuangXia,YANG Yan,GENG Jing,CAO ZiCheng,LI YuNa. Responses of Soil Organic Carbon Fractionation and Microbial Community to Nitrogen and Water Addition in Artificial Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!