Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3486-3496.doi: 10.3864/j.issn.0578-1752.2012.17.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Retrieving LAI of Winter Wheat Based on Sensitive Vegetation ndex by the Segmentation Method

 LI  Xin-Chuan, XU  Xin-Gang, BAO  Yan-Song, HUANG  Wen-Jiang, LUO  Ju-Hua, DONG  Ying-Ying, SONG  Xiao-Yu, WANG  Ji-Hua   

  1. 1.南京信息工程大学气象灾害省部共建教育部重点实验室,南京210044
    2.南京信息工程大学大气物理学院,南京210044
    3.北京农业信息技术研究中心,北京 100097
    4.中国科学院对地观测与数字地球中心,北京 100190
  • Received:2012-02-15 Online:2012-09-01 Published:2012-09-01

Abstract: 【Objective】The method of inversion leaf area index (LAI) using a single vegetation index (VI) is influenced by different degrees of saturability and soil background. This paper proposed a method choosing sensitive vegetation index by the segmentation method to form optimal VI combination, and to improve the accuracy of LAI inversion.【Method】In this study the ACRM radiation transmission model was used to simulate data, and the ground measured spectrum data were obtained. The study analyzed soil sensitivity and saturability about the common vegetation index to determine the segment point of LAI, and chose the best vegetation index based on segment point of LAI to form a combination VI for achieving the final inversion of the LAI. This method was also used in the regional winter wheat LAI inversion application with the Landsat5 TM data. 【Result】The analysis showed that, LAI = 3 was the more appropriate segment point, and the use of vegetation index segment combination OSAVI (LAI ≤3) + TGDVI (LAI>3) partly overcame soil factors and the saturation problems. The joint inversion results were significantly superior to the single vegetation index retrieval accuracy.【Conclusion】LAI was effectively inversed with the higher accuracy by choosing the best vegetation index through the segmentation method.

Key words: winter wheat, leaf area index (LAI), vegetation index, segmentation inversion, remote sensing

[1]Chen J M, Black T A. Defining leaf area index for non-flat leaves. Plant, Cell and Environment, 1992, 15(4): 421-429.

[2]王纪华, 赵春江, 黄文江. 农业定量遥感基础与应用. 北京: 科学出版社, 2008.

Wang J H, Zhao C J, Huang W J. Basis and Application of Agricultural Quantitative Remote Sensing. Beijing: Science Press, 2010. (in Chinese)

[3]张佳华, 张国平, 王培娟. 植被遥感. 北京: 科学出版社, 2010.

Zhang J H, Zhang G P, Wang P J. Vegetation and Ecological Remote Sensing. Beijing: Science Press, 2010. (in Chinese)

[4]李映雪, 朱 艳, 戴廷波, 田永超, 曹卫星. 小麦叶面积指数与冠层反射光谱的定量关系. 应用生态学报,2006, 17(8): 1443-1447.

Li Y X, Zhu Y, Dai Y B, Tian Y C, Cao W X. Quantitative relationships between leaf area index and canopy reflectance spectra of wheat. Journal of Applied Ecology, 2006, 17(8): 1443-1447. (in Chinese)

[5]陈雪洋, 蒙继华, 杜 鑫, 张飞飞, 张 淼, 吴炳方. 基于环境星CCD数据的冬小麦叶面积指数遥感监测模型研究. 国土资源遥感, 2010, 84(2): 55-62.

Chen X Y, Meng X H, Du X, Zhang F F, Zhang M, Wu B F. The monitoring of the winter wheat leaf area index based on HJ-1 CCD date. Remote Sensing for Land & Resource, 2010, 84(2): 55-62. (in Chinese)

[6]刘占宇, 黄敬峰, 王福民, 王 渊. 估算水稻叶面积指数的调节型归一化植被指数. 中国农业科学, 2008, 41(10): 3350-3356.

Liu Z Y, Hang J F, Wang F M, Wang Y. Adjusted-normalized difference vegetation index for estimating leaf area index of rice. Scientia Agriculture Sinica, 2008, 41(10): 3350-3356. (in Chinese)

[7]赵英时. 遥感应用分析原理与方法. 北京: 科学出版社, 2003.

Zhao Y S. The Principle and Method of Analysis of Remote Sensing Application. Beijing: Science Press, 2003. (in Chinese)

[8]田庆久, 闵祥军. 植被指数研究进展. 地球科学进展, 1998, 13(4): 327-333.

Tian Q J, Min X J. Advances in study on vegetation indices. Advance in Earth Science, 1998, 13(4): 327-333. (in Chinese)

[9]Houborg R, Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forword canopy reflectance modeling and SPOT reflectance data. Remote Sensing of Environment, 2008, 112(1): 186-202.

[10]Martinez-Beltran C, Jochum M A, Osann Calera A, Melia J. Multisensor comparison of NDVI for a semi-arid environment in Spain. International Journal of Remote Sensing, 2009, 30(5):1355-1384.

[11]Meroni M, Colombo R, Panigada C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sensing of Environment, 2004, 92(2):195-206.

[12]Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(2):261-270.

[13]Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetry Enginerring & Remote Sensing, 1977, 43(12): 1541-1552.

[14]Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmosphere noise. IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(2):457-465.

[15]Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298.

[16]Gong P, Pu R, Biging G, Larrieu M R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362.

[17]Qi J, Chehbouni A L, Huete A R, Kerr Y H, Sorooshian S. A modified soil adjusted vegetation index(MSAVI). Remote Sensing of Environment, 1994, 48(2):119-126.

[18]Chen J M. Evaluation of vegetation indices and modi?ed simple ratio for boreal applications. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242.

[19]Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring vegetation systems in the great plain with ERTS. Proceedings of the 3rd ERTS Symposium, 1973, 1: 48-62.

[20]Goel N S, Quin W. In?uences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR: a computer simulation. Remote Sensing of Environment, 1994, 10(4):309-347.

[21]Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107.

[22]Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional re?ectance measurements. Remote Sensing of Environment, 1995, 51(3): 375- 384.

[23]Jordan C F. Derivation of leaf area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666.

[24]Huete A R. A soil adjusted vegetation index SAVI. Remote Sensing of Environment, 1988, 25(3):295-309.

[25]唐世浩, 朱启疆, 王锦地, 周宇宇, 赵 峰. 三波段梯度差植被指数的理论基础及其应用. 中国科学: D辑,2003,33(11): 1094-1102.

Tang S H, Zhu Q J, Wang J D, Zhou Y Y, Zhao F. Theoretical bases and application of three gradient difference vegetation index. Science in China: Series D, 2003, 33(11): 1094-1102. (in Chinese)

[26]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172.

[27]Kuusk A. Two-layer canopy reflectance model ACRM User Guide, 2007, Version 07.

[28]姜志伟, 陈仲新, 任建强. 基于ACRM辐射传输模型的植被叶面积指数遥感反演. 中国农业资源与区划, 2011, 32(1): 57-63.

Jiang Z W, Chen Z X, Ren J Q. The inversion of vegetation leaf area index based on the canopy radiative transfer meodel ACRM. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(1): 57-63. (in Chinese)

[29]Bicheron P, Leroy M. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model. Remote Sensing of Environment, 1999, 67(3):251-266.

[30]冯 晓, 郑国清, 乔 淑, 胡 峰, 马中杰. 基于冠层反射光谱的夏玉米 LAI 估算模型研究. 玉米科学, 2008, 16(6):86-89.

Feng X, Zheng G Q, Qian S, Hu F, Ma Z J. Estimation models of summer maize LAI based on canopy reflectance spectral. Journal of Maize Sciences, 2008, 16(6):86-89. (in Chinese)

[31]Wang F M, Huang J F, Tang Y L, Wang X Z. New vegetation index and its application in estimating leaf area index of rice. Rice Science, 2007, 14(3) : 195-203.

[32]董莹莹, 王纪华, 李存军, 杨贵军, 宋晓宇, 顾晓鹤, 黄文江. 基于数据分割与主成分分析的LAI遥感估算. 红外与毫米波学报, 2011,20(2): 124-130.

Dong Y Y, Wang J H, Li C J, Yang G J, Song X Y, Gu X H, Huang W J. Estimating leaf area index from remote sensing data: based on data segmentation and principal component analysis. Journal of Infrared and Millimeter Waves, 2011, 20(2): 124-130. (in Chinese)

[33]柏军华, 李少昆, 王克如, 张小均, 肖春华, 隋学艳. 棉花叶面积指数冠层反射率光谱响应及其反演. 中国农业科学, 2007, 40(1): 63-69.

Bai J H, Li S K, Wang K R, Zhang X J, Xiao C H, Sui X Y. The response of canopy reflectance spectrum for the cotton LAI and LAI inversion. Scientia Agriculture Sinica, 2007, 40(1): 63-69. (in Chines)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[5] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[6] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[7] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[8] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[9] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[10] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[11] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[12] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[13] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[14] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[15] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!