Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (9): 1826-1832.doi: 10.3864/j.issn.0578-1752.2012.09.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

The Difference Expression Profiles of miR-181a and Transcription Regulation Region Analysis in Chicken

 SUN  Gui-Rong, LI  Ming, KANG  Xiang-Tao, LI  Guo-Xi, TIAN  Ya-Dong, HAN  Rui-Li, BAI  Yi-Chun   

  1. 1.河南农业大学牧医工程学院/河南省家禽种质资源创新工程研究中心,郑州 450002
  • Received:2011-09-07 Online:2012-05-01 Published:2011-12-01

Abstract: 【Objective】 In order to provide theoretical data support for the study of the function of miR-181a, the tissue and developmental expression profiles, as well as transcriptional regulation region of chicken miR-181a were analyzed. 【Method】 The expression patterns of chicken miR-181a at two stages of chicken cerebrum lung, liver, spleen, kindey, crura, muscle, hupothalamus, cerebellum, heart, pectoralmuscle and thymus gland tissues were performed with qPCR technology, and the miR-181a transcriptional regulation site and the promoter region were analyzed by ENCODE. 【Result】 The results indicated that the expression of miR-181a in hypothalamus from the solexa sequencing was similar to those from qPCR. The results of qPCR showed that: the expression of miR-181a was tissue-specific in the same developmental period. The expression level of miR-181a was significantly different in different tissues. The expression in the same tissue between one day and adult chicken showed phase specific, the expression of miR-181a in other ten tissues was significantly different (P<0.05), except liver (P>0.05). ENCODE showed that in the upstream region of miR-181a-1 there existed continuous transcriptional regulation regions, ChIP-seq showed that the transcriptional regulatory region of miR-181a-1 may exist a transcriptional factor. The main transcription factors are NFKB, c-Fos and so on. 【Conclusion】The result indicated that the expression of miR-181a was tissue- and phase-specific. The sequence of miR-181a is highly conservative in vertebrates. The upstream of miR-181a has a transcriptional regulation region and a promoter region.

Key words: chicken, miR-181a, transcription regulation region

[1]Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2003, 116(2): 287-297.

[2]Wang H W, Mendel J T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal Cancer, 2006, 94(6): 776-780.

[3]Cheng A M, Byrom M W, Shelton J. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 2005, 33(4): 1290-1297.

[4]Reinhart B J, Slack F J, Basson M, Basson M, Pasquinelli A E, Bettinge J C, Rougvie A E, Robert Horvitz H, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906.

[5]Miska E A. How microRNAs control cell division, differentiation and death. Current Opinion Genetics Development, 2005, 15(15): 563-568.

[6]Zhou Y M, Ferguson J, Chang J T, Kluqer Y. Inter- and intra- combinatorial regulation by transcription factors and microRNAs. BMC Genomics, 2007, 8: 396-406.

[7]Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.

[8]Wang Y, Stricker H M, Gou D, Liu L. MicroRNA: past and present. Fronties in Bioscience, 2007, 12: 2316-2329.

[9]Nielsen M, Hansen J H, Hedegaard J, Nielsen R O, Panitz F, Bendixen C, Thomsen B. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Animal Genetics, 2010, 41(2): 159-168.

[10]Mccarthy J J, Esser K A, Andrade F H, Andrade F H. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. American Journal of Physiology Cell Physiology, 2007, 293(1): C451-C457.

[11]Sokol N S, Ambros V. Mesodermally expressed drosophila microrna-1 is regulated by twist and is required in muscles during larval growth. Genes Development, 2005, 19(19): 2343-2354.

[12]Trakooljul N, Hicks J A, Liu H C. Identification of target genes and pathways associated with chicken microRNA miR-143. Animal Genetics, 2010, 41(4): 357-364.

[13]Kloosterman W P, Lagendijk A K, Ketting R F, Moulton J D, Plasterk R H A. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic Islet development. PLoS Biology, 2007, 5(8): 1738-1749.

[14]Esau C, Davis S, Murray S F, Yu X X, Pandey S K, Pear M, Watts L, Booten S L, Graham M, McKay R, Subramaniam A, Propp S, Lollo B A, Freier S, Bennett C F, Bhanot S, Monia B P. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 2006, 3(2): 87-98.

[15]Li Q J, Chau J, Ebert P J, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein L O, Davis M M, Chen C Z. MiR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 2007, 129(1): 147-161.

[16]Chen C Z, Li L, Lodish H F, Bartel D P. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654): 83-86.

[17]Shivdasani R A. MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006, 108(12): 3646-3653.

[18]Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy S M, Yoon B J, Gunaratne P H, Kim J H, Chen R, Wang J, Zhou H. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics, 2009, 10: 512-532.

[19]孙桂荣. 鸡下丘脑发育相关差异miRNA和mRNA的鉴定及功能预测分析[D]. 郑州: 河南农业大学, 2011.

Sun G R. Expression profiles of miRNA and mRNA in chicken hypothalamus and its bioinformatics analysis[D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese)

[20]Miska E A, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz H R. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 2004, 5(9): R68.1-13.

[21]Peltier H J, Latham G J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA, 2008, 14(5): 844-852.

[22]李国喜, 宁小敏, 李新建, 吴宗松, 杨公社. 猪组织中miR-103实时定量PCR分析时合适内参的确定. 中国生物化学与分子生物学报, 2009, 25(12): 1149-1154.

Li G X, Ning X M, Li X J, Wu Z S, Yang G S. Identification of suitable reference for quantitative RT-PCR assays of miR-103 in pig tissues. China Journal Biochemistry Molecular Boilogy, 2009, 25(12): 1149-1154. (in Chinese)

[23]Chen G, Zhu W, Shi D Z, Lü L, Zhang C, Liu P, Hu W X. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncology Reports, 2010, 23(4): 997-1003.

[24]吴  涛, 石宝晨, 陈润生. 1%人类基因组DNA元件解译基因组结构的传统认识受到挑战-变人类基因组“天书”为“百科全书”的重要一步. 生物化学与生物物理进展, 2007, 34(7): 669-672.

Wu T, Shi B C, Chen R S. Challenge of traditional understanding genome structure through Identification and analysis of functional elements in 1% of the human genome. Progress in Biochemistry and Biophysics, 2007, 34(7): 669-672. (in Chinese)

[25]Wu L, Zhou H Y, Zhang Q Q, Zhang J G, Ni F R, Liu C, Qi Y J. DNA methylation mediated by a microRNA pathway. Molecular Cell, 2010, 38(3): 465-475.

[26]O’neill L A, Kaltschmidt C. NF-kB a crucial transcription factor for glial and neuronal cell function. Trends Neuroscience, 1997, 20(6): 252-258.

[27]Ciafrè S A, Galardi S, Mangiola A, Ferracin M, Liu C G, Sabatino G, Negrini M, Maira G, Croce C M, Farace M G. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical Biophysical Research Communications, 2005, 334(4): 1351-1358.

[28]The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799-816.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
[15] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!