Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (9): 1775-1790.doi: 10.3864/j.issn.0578-1752.2012.09.013

• HORTICULTURE • Previous Articles     Next Articles

Proteomic Analysis of Early Somatic Embryogenesis in Longan (Dimocarpus longan Lour.)

 LAI  Cheng-Chun, LAI  Zhong-Xiong, FANG  Zhi-Zhen, HE  Yuan, JIANG  Shun-Ri   

  1. 1.福建农林大学园艺植物生物工程研究所,福州 350002
    2.福建省农业科学院农业工程技术研究所,福州 350003
  • Received:2011-11-23 Online:2012-05-01 Published:2012-03-21

Abstract: 【Objective】The differential expressions of proteome patterns at 5 early developmental stages were analyzed during longan somatic embryogenesis. The results would contribute to the further research for isolation of plant embryo development associated protein genes and studies of plant somatic embryogenesis mechanisms. 【Method】Five embryogenic cultures at early developmental stages from the established longan somatic embryogenesis and regeneration system were obtained after synchronized culture. And their changes of proteomic patterns were investigated by the immobilized pH gradients two-dimensional electrophoresis technology and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF). 【Result】From 1 203 to 1 798 protein spots could reproducibly be resolved in two-dimensional gels, most of them displayed obvious differences in the expression abundances at different stages and small part of them were of specific expression. On the basis of variations of protein numbers, expression abundances, molecular weight and isoelectric point, the key stages of early somatic embryogenesis in longan were determined, namely from ECII (Embryogenic callus II) to CpECGE (Compact pro-embryogenic cultures globular embryos). Forty-five differentially expressed proteins were identified and the identification rate was 37%. These findings suggested that energy and carbohydrate metabolism and oxidative stress response have a large majority, 22% and 27% respectively. It could be deduced by analyzing the functions of these proteins that the material foundation of longan somatic embryogenesis at early stages was of energy and carbohydrate metabolism, and the precondition of somatic embryogenesis was of oxidative stress response. To ensure the normal development of somatic embryos, these proteins together with the proteins related to cytoskeleton stability, nitrogen metabolism, signal transduction, gene regulation, protein synthesis or modification, and positioning function formed an enormous protein network system of early somatic embryogenesis in longan. 【Conclusion】There had more overall understanding to expression changes of  proteome patterns during the early longan somatic embryogenesis. The number of expressed proteins had a trend of increase after the first decrease, and then reduced again. During the early longan somatic embryogenesis, energy and carbohydrate metabolism is very vigorously, and the proteins related to oxidative stress response may play an important role in modulating the early somatic embryogenesis and development.

Key words: longan (Dimocarpus longan Lour.), somatic embryogenesis, proteomics, two-dimensional electrophoresis, mass spectrometry

[1]Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. The Plant Cell, 1993, 5:1411-1423.

[2]Dodeman V L, Ducreux G. Total protein pattern expression during induction and development of carrot somatic embryos. Plant Science, 1996, 120:57- 69.

[3]邢更生, 崔凯荣, 山  仑, 王亚馥. 植物体细胞胚发生的分子基础. 遗传, 1999, 21(1): 30-34.

Xing G S, Cui K R, Shan L, Wang Y F. Molecular foundation in plant somatic embryogenesis. Hereditas, 1999, 21(1): 30-34.(in Chinese)

[4]Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X. A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics,2007, 90: 620-628.

[5]Lai Z X, Chen C L, Zeng L H, Chen Z G. Somatic embryogenesis in longan (Dimocarpus longan Lour.). Forestry Sciences, 2000, 67: 415-432.

[6]Chugh A, Khurana P. Gene expression during somatic embryogenesis - recent advances. Current Science, 2002, 86:715-730.

[7]Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in Yeast. Molecular and Cellular Biology, 1999, 19(3): 1720-1730.

[8]Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405(6788): 837-846.

[9]Katz-Jaffe M G, Gardner D K. Embryology in the era of proteomics. Theriogenology, 2007, 68S: S125-S130.

[10]Lippert D, Zhuang J, Ralph S, Ellis D E, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas C J, Bohlmann J. Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics, 2005, 5(2): 461-473.

[11]Imin N, Jong F D, Mathesius U, van Noorden G, Saeed N A, Wang X D, Rose R J, Rolfe B G. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics, 2004, 4(7):1883-1896.

[12]Imin N, Nizamidin M, Daniher D, Nolan K E, Rose R J, Rolfe B G. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiology, 2005, 137(4): 1250-1260.

[13]Nogueira F C S, Gonçalves E F, Jereissati E S, Santos M, Costa J H, Oliveira-Neto O B, Soares A A, Domont G B, Campos F A P. Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Reports, 2007, 26:1333-1343.

[14]Marsoni M, Bracale M, Espen L, Prinsi B, Negri A S, Vannini C. Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Reports, 2008, 27(2): 347-356.

[15]Sghaier-Hammami B, Drira N, Jorrín-Novo JV. Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Journal of Proteomics, 2009, 73(1): 161-177.

[16]Lyngved R, Jenny Renaut, Hausman J-F, Iversen T-H, Hvoslef-Eide A K. Embryo-specific proteins in cyclamen persicum analyzed with 2-D DIGE. Journal of Plant Growth Regulation, 2008, 27: 353-369.

[17]Bian F H, Zheng C X, Qu F N, Gong X Q, You C R. Proteomic Analysis of Somatic Embryogenesis in Cyclamen persicum Mill. Plant Molecular Biology Reporter, 2010, 28(1): 22-31.

[18]Baba A I, Nogueira F C S, Pinheiro C B, Brasil J N, Jereissati E S, Jucá T L, Soares A A, Santos M F, Domont G B, Campos F A P. Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Science, 2008, 175: 717-723.

[19]Cangahuala-Inocente G C, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra M P. Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiologiae Plantarum, 2009, 31: 501-514.

[20]Pan Z, Guan R, Zhu S, Deng X X. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Reports, 2009, 28(2): 281-289.

[21]安  娜, 赖钟雄, 郭志雄. 龙眼体细胞胚胎发生过程中特异表达蛋白的双向电泳分析. 福建农林大学学报: 自然科学版, 2007, 36(3): 244-249.

An N, Lai Z X, Guo Z X. 2-DE analysis of the proteins expressed specifically during somatic embryogenesis in longan. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2007, 36(3): 244-249.(in Chinese)

[22]何  园. 龙眼体胚成熟过程的蛋白质组学研究[D]. 福州: 福建农林大学, 2009.

He Y. Studies on proteomics during somatic embryo maturation in Dimocarpus Longan Lour[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009.(in Chinese)

[23]Stasolla C, Bozhkov P V, Chu T-M, Zyl L V, Egertsdotter U, Suarez M F, Craig D, Wolfinger R D, Arnold S V, Sederoff R R. Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiology, 2004, 24(10):1073-1085.

[24]陈春玲, 赖钟雄. 龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察. 福建农林大学学报: 自然科学版, 2002, 31(2): 192-194.

Chen C L, Lai Z X. Synchronization regulation of embryogenesis of emhryogenie ealli and their histological ohserrations in longan. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2002, 31(2): 192-194.(in Chinese)

[25]陈毓荃. 生物化学实验方法和技术. 北京: 科学出版社, 2002, 95-97

Chen Y Q. Biochemistry Experiment Method and Technology. Beijing: Science Press, 2002, 95-97.

[26]赖呈纯, 赖钟雄, 何  园, 方智振, 欧阳建树. 龙眼胚性培养物高分辨率蛋白质双向电泳技术. 福建农林大学学报: 自然科学版, 2008, 37(1): 37-41.

Lai C C, Lai Z X, He Y, Fang Z Z, Ouyang J S. High-resolution two-dimensional electrophoresis technology for the analysis of the proteins of embryogenic cultures in longan(Dimocarpus longan Lour.). Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2008, 37(1): 37-41. (in Chinese)

[27]Mortz E, Krogh T N, Vorum H, Gög A. Improved silver staining protocols for high sensitivity protein identification using matrix- assisted laser desorption/ionization-time of flight analysis. Proteomics, 2001, 1(11):1359-1363.

[28]Zheng X J, Hong L L, Shi L X, Guo J Q, Sun Z, Zhou J Y. Proteomics analysis of host cells infected with infectious bursal disease virus. Molecular & Cellular Proteomics, 2008, 7(3):612-625.

[29]Eisen M B, Spellman P T, Brown P O, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 14863-14868.

[30]van Der Straeten D, Rodrigues-Pousada R A, Goodman H M, van Montagua M. Plant enolase: gene structure, expression, and evolution. The Plant Cell, 1991, 3: 719-735.

[31]Stock D, Leslie A G W, Walker J E. Molecular architecture of the rotary motor in ATP synthase. Science,1999, 286 : 1700-1705.

[32]崔凯荣, 王君健, 邢更妹, 王亚馥. 枸杞胚性细胞分化的超微结构和ATP酶的细胞化学定位研究. 西北植物学报, 1997, 17(6): 106-110.

Cui K R, Wang J J, Xing G M, Wang Y F. Ultrastructural and cytochemical localization of ATPase activity studies of embryogenic cell differentiation in Lycium barbarum L. Acta Botanica Boreali- Occidentalia Sinica, 1997, 17(6): 106-110. (in Chinese)

[33]赖呈纯, 赖钟雄, 方智振, 林玉玲, 姜顺日. 龙眼胚性愈伤组织线粒体ATP合酶β亚基基因克隆及其在龙眼体胚发生过程中的表达分析. 中国农业科学, 2010, 43(16): 3392-3401.

Lai C C, Lai Z X, Fang Z Z, Lin Y L, Jiang S R. Cloning of mitochondrial f1-atpase beta subunit gene from embryogenic callus and its expression analysis by qrt-pcr during somatic embryogenesis in longan. Scientia Agricultura Sinica, 2010, 43(16): 3392-3401. (in Chinese)

[34]Minárik P, Tomáková N, Kollárová M, Antalík M. Malate dehydrogenases-structure and function. General Physiology and Biophysics, 2002, 21: 257-265.

[35]Jorge C, Mangolin C A, Machado M F P S. Malate dehydrogenase isozymes (MDH; EC 1.1.1.37) in long-term callus culture of Cereus peruvianus (Cactaceae) exposed to sugar and temperature stress. Biochemical Genetics, 2004, 35:155-164.

[36]Dhindsa R S. Drought Stress, Enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiology, 1991, 95:648-651.

[37]朱理安, 方宁远. α烯醇化酶——古老的蛋白, 崭新的功能. 国际病理科学与临床杂志, 2007, 27(4):347-350.

Zhu L A,Fang N Y. Alpha—enolase: old protein with new faces. International Journal of Pathology and Clinical Medicine, 2007, 27(4): 347-350. (in Chinese)

[38]Morita T, Kawamoto H, Mizota T, Inada T, Aiba H. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Molecular Microbiology, 2004, 54(4): 1063-1075.

[39]Rode C, Gallien S, Heintz D, Dorsselaer A V, Braun H-P, Winkelmann  T. Enolases: storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill. Plant Molecular Biology, 2011, 75: 305-319.

[40]赖呈纯, 赖钟雄, 方智振, 林玉玲, 姜顺日. 龙眼TPI基因的克隆及其在体胚发生过程中表达分析. 园艺学报, 2012, 39(3): 443-452.

Lai C C, Lai Z X, Fang Z Z, Lin Y L, Jiang S R. Cloning of TPI gene from embryogenic callus and its expression analysis during somatic embryogenesis in longan. Acta Horticulture Sinica, 2012, 39(3): 443-452.

[41]Seigle J L, Celotto A M and Palladino M J. Degradation of functional triose phosphate isomerase protein underlies sugarkill pathology. Genetics, 2008, 179: 855-862.

[42]Dorion S, Parveen, Jeukens J, Matton D P, Rivoal J. Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves. Plant Science, 2005, 168: 183-194.

[43]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Approach to analyzing drought and salt-responsiveness in rice. Field Crops Research, 2002, 76: 199-219.

[44]Cordewener J, Booij H, Zandt H, Engelen F, Kammen A, Vries S. Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta, 1991, 184: 478-486.

[45]Takeda H, Kotake T, Nakagawa N, Sakurai N, Nevins D J. Expression and function of cell wall-bound cationic peroxidase in asparagus somatic embryogenesis. Plant Physiology and Biochemistry, 2003, 131(4): 1765-1774.

[46]Conrad M, Jakupoglu C, Moreno S G, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos A K, Just U, Sinowatz F, Schmahl W, Chien K R, Wurst W, Bornkamm G W, Brielmeier M. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Molecular and Cellular Biology, 2004, 24(21): 9414-9423.

[47]Jakupoglu C, Przemeck G K H, Schneider M, Moreno S G, Mayr N, Hatzopoulos A K, Angelis M H, Wurst W, Bornkamm G W, Brielmeier M, Conrad M. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Molecular and Cellular Biology, 2005, 25(5): 1980-1988.

[48]Bondareva A A, Capecchi M R, Iverson S V, Li Y, Lopez N I, Lucas O, Merrill G F, Prigge J R, Siders A M, Wakamiya M, Wallin S L, Schmidt E E. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radical Biology and Medicine, 2007,43(6): 911-923.

[49]Gang D R, Kasahara H, Xia Z Q, Mijnsbrugge K V, Bauw G, Boerjan W, Montagu M V, Davin L B, Lewis N G. Evolution of plant defense mechanisms. The Journal of Biological Chemistry, 1999, 274(11): 7516-7527.

[50]Tommasi F, Paciolla C, de Pinto M C, de Gara L. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. Joural of Experimental Botany, 2001, 52(361): 1647-1654.

[51]Earnshaw B A, Morris A. Johnson. Control of wild carrot somatic embryo development by antioxidants. Plant Physiology, 1985: 273-276.

[52]Joosen R, Cordewener J, Supena E D J, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K. Combined transcriptome and proteome analysisidentifies pathways and markers associated withthe establishment of rapeseed microspore- derived embryo development. Plant Physiology, 2007, 144: 155-172.

[53]邵  巍, 赖钟雄, 赖呈纯, 孙  云, 陈义挺, 蔡英卿. 龙眼胚性培养物APX同工酶的分析方法建立及其在龙眼体胚发生过程中的变化. 福建农林大学学报: 自然科学版, 2008, 37(2): 140-144.

Shao W, Lai Z X, Lai C C, Sun Y, Chen Y T, Cai Y Q. A method for analyzing APX isozymes from embryogenic cultures by polyacrylamide gel electrophoresis and the changes of APX isozymes at the stages of somatic embryogenesis in longan. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2008, 37(2): 140-144.(in Chinese)

[54]李惠华, 赖钟雄. 龙眼体胚发生过程中抗坏血酸过氧化物酶活性的变化. 亚热带植物科学, 2006, 35(3): 9-11.

Li H H, Lai Z X. The determination of APX activity in somatic embryogenesis of longan. Subtropical Plant Science, 2006, 35(3): 9-11. (in Chinese)

[55]Lin Y L, Lai Z X. Reference genes selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 2010, 178: 359-365.
[1] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[2] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[3] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[4] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[5] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[6] CHEN YanFang,ZHANG MingWei,ZHANG Yan,DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping. Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice [J]. Scientia Agricultura Sinica, 2021, 54(1): 190-202.
[7] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
[8] ZHAO Shan,ZHONG LingLi,ZHOU Hong,LI Xi,LEI XinYu,HUANG ShiQun,ZHENG XingGuo,FENG JunYan,LEI ShaoRong,GUO LingAn. Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2020, 53(3): 612-631.
[9] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[10] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[11] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[12] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[13] XIAO ZhiMing, WANG Jun, SUO DeCheng, WEI ShuLin, JIA Zheng, LIU ChengXin, FAN Xia. Quantitative Determination of Diludine in Animal Feeds by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2018, 51(9): 1806-1814.
[14] ZHAO XiJuan, ZHAO WuJi, XU HuaChao. Analysis of the Fingerprints of Different Orange Varieties and Their Differential Metabolites Based on Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and Progenesis QI [J]. Scientia Agricultura Sinica, 2018, 51(13): 2551-2560.
[15] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!