Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3750-3758.doi: 10.3864/j.issn.0578-1752.2011.18.006

• PLANT PROTECTION • Previous Articles     Next Articles

Physiological Effect and Cytological Characterization Regarding Susceptible Response of New Herbicide ZJ0273 in Barley

 GUO  Xiang, ZHANG  Fan, JIN  Zong-Lai, DENG  Xiang-Qin, WU  Ling-Tong, Warusawitharana  Hasitha, ZHOU  Wei-Jun   

  1. 1.浙江大学作物科学研究所
  • Received:2010-11-18 Revised:2011-06-13 Online:2011-09-15 Published:2011-07-27

Abstract: 【Objective】In order to define the safety and mechanism of new herbicide propyl 4-(2-(4,6-dimethoxypyrimidin- 2-yloxy)benzylamino) benzoate (ZJ0273) to barley, this paper investigated the physiological effect of ZJ0273 on the root-tip cell ultrastructural development and mitosis in barley. 【Method】 Effects of different concentrations of ZJ0273 applied at 4th leaf stage on acetolactate synthase (ALS) activity, protein content, photosystem II quantum characteristics, SPAD, net photosynthesis (Pn) and 100 mg•L-1 ZJ0273 on the development of root-tip cell were analyzed by various physiological measurements and microscopy techniques. 【Result】The inhibited effect of 100 mg•L-1 ZJ0273 treatment (also a recommended concentration used in the field) on the growth of barely seedlings was slight at first, but this treatment inhibited significantly the ALS activity, protein content, photosynthetic system of barley seedlings along with the prolongation of treatment durations. The results also showed that the volume and number of vacuoles as well as mitotic index in treated cells were decreased, while the number of microbodies was increased. Both of 500 and 1 000 mg•L-1 ZJ0273 treatments inhibited the physiological index of barley at different treatment times. 【Conclusion】 Barley seedlings are sensitive to herbicide ZJ0273 at concentration of 100 mg•L-1at late stage and unsafe at 500 and 1000 mg•L-1. The inhibitive effect of ZJ0273 on photosystem II and the change of microbody in mitochondria might be related to the mechanism of this new herbicide.

Key words: barley, ZJ0273, acetolactatesynthase(ALS), proteincontent, photosystem, microscopicstructure, mitoticindex

[1]张人君, 何锦豪, 郑晋元, 李妙寿, 茅富亭, 陈传权, 魏福香. 浙江省麦田和油菜田杂草发生种类及危害. 浙江农业学报, 2000,12(6): 308-316.

Zhang R J, He J H, Zheng J Y, Li M S, Mao F T, Chen C Q, Wei F X. Weed species and their damage in wheat, barley, and rapeseed fields in Zhejiang. Acta Agriculturae Zhejiangensis, 2000, 12(6): 308-316. (in Chinese)

[2]刘兴旺, 董丰明. 防除油菜田和麦田杂草的几种除草剂. 四川农业科技, 2007(8): 46.

Liu X W, Dong F M. Several herbicides were used in rapeseed and corn field. Sichuan Agricultural Science and Technology, 2007(8): 46. (in Chinese)

[3]吕  龙, 陈  杰, 吴  军. 2-嘧啶氧基-N-芳基苄胺衍生物制备方法及应用. 世界PCT专利, 2002: WO 02/34724 A1.

Lü L, Chen J, Wu J. 2-Pyrimidinyloxy-N-aryl-benzylamine derivatives, their processes and uses. World PCT Patent, 2002: WO 02/34724 A1. (in Chinese)

[4]吕  龙, 吴  军, 陈  杰. 2-嘧啶氧基苄基取代苯基胺类衍生物. 中国专利, 2003: ZL 00130735 5.

Lü L, Wu J, Chen J. 2-Pyrimidinyloxy-N-aryl-benzylamine derivatives. China Patent, 2003: ZL 00130735 5. (in Chinese)

[5]Lü L, Chen J, Wu J. 2-Pyrimidinyloxy-n-aryl-benzylamine derivatives, their processes and uses. US Patent, 2004: 6,800,590 B2.

[6]陈仕高, 谢雪梅, 蒲正国, 刘  春, 肖晓华, 谯青春, 朱明华. 10%丙酯草醚EC防除油菜杂草效果及药害分析. 农药, 2007, 46(3): 199-201.

Chen S G, Xie X M, Pu Z G, Liu C, Xiao X H, Qiao Q C, Zhu M H. Controlling effect and security for a novel herbicide ZJ0273 10% EC on oilseed rapes. Agrochemicals, 2007, 46(3): 199-201. (in Chinese)

[7]陈  杰, 袁  军, 刘继东, 付群梅, 吴  军. 新型除草剂丙酯草醚的作用机理. 植物保护学报, 2005, 32(1): 48-52.

Chen J, Yuan J, Liu J D, Fu Q M, Wu J. Mechanism of action of the novel herbicide ZJ0273. Acta Phytophylacica Sinica, 2005, 32(1): 48-52. (in Chinese)

[8]Zhang W F, Zhang F, Raziuddin R, Gong H J, Yang Z M, Lu L, Ye Q F, Zhou W J. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. Journal of Plant Growth Regulation, 2008, 27: 159-169.

[9]王  伟, 岳  玲, 丁  炜, 余志扬, 汪海燕, 叶庆富, 吕  龙. [A环-U-14C]丙酯草醚在土壤中的迁移和淋溶. 核农学报, 2007, 21(3): 283-286.

Wang W, Yue L, Ding W, Yu Z Y, Wang H Y, Ye Q F, Lü L. Leaching and movement of [A ring-U-14C] pyribambenz-propyl in soil. Journal of Nuclear Agricultural Sciences, 2007, 21(3): 283-286. (in Chinese)

[10]付群梅, 陈  杰, 王静华, 徐小燕. 10%丙酯草醚悬浮剂防除油菜田杂草试验. 农药, 2005, 44(7): 331-333.

Fu Q M, Chen J, Wang J H, Xu X Y. Weed control in rape with ZJ0273 10% SC. Chinese Journal of Pesticides, 2005, 44(7): 331-333. (in Chinese)

[11]唐庆红, 陈  杰, 吕  龙. 新型高效油菜田除草剂丙酯草醚的创制研究. 农药, 2005, 44(11): 496-502.

Tang Q H, Chen J, Lü L. An innovative research for novel rape herbicide ZJ0273. Chinese Journal of Pesticides, 2005, 44(11): 496-502. (in Chinese)

[12]Yu Q, Shane Friesen L J, Zhang X Q, Powles S B. Tolerance to acetolactate synthase and acetyl-coenzyme a carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pesticide Biochemistry and Physiology, 2004, 78: 21-30.

[13]Zhang F, Jin Z L, Naeem M S, Ahmed Z I, Gong H J, Lu L, Ye Q F, Zhou W J. Spatial and temporal changes in acetolactate synthase activity as affected by new herbicide ZJ0273 in rapeseed, barley and water chickweed. Pesticide Biochemistry and Physiology, 2009, 95: 63-71.

[14]张  帆. 丙酯草醚胁迫下油菜与大麦耐性机制及其生理信息的光谱模型构建[D]. 杭州: 浙江大学, 2009.

Zhang F. Tolerance mechanism of rapeseed and barley to herbicide (ZJ0273) stress and development of spectroscopy models for physiological parameters[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)

[15]Jin Z L, Zhang F, Ahmed Z I, Rasheed M, Naeem M S, Ye Q F, Zhou W J. Differential morphological and physiological responses of two oilseed Brassica species to a new herbicide ZJ0273 used in rapeseed fields. Pesticide Biochemistry and Physiology, 2010, 98: 1-8.

[16]付群梅,董德臻,吕  龙,陈  杰,刘燕君,唐庆红. 丙酯草醚在土壤中的残留及对后茬作物的安全性. 农药, 2009, 48(1): 50-52.

Fu Q M,Dong D Z, Lü L, Chen J, Liu Y J, Tang Q H. Residue of ZJ0273 in soil and its effects on following crops. Agrochemicals, 2009, 48(1): 50-52. (in Chinese)

[17]李  政, 韩爱良, 张燕飞, 李菊英, 王  月, 汪海燕, 叶庆富, 吕  龙. [C环-U-14C] 丙酯草醚在油菜和水稻中的吸收、运转及分布. 核农学报, 2009, 23(4): 676-680.

Li Z, Han A L, Zhang Y F, Li J Y, Wang Y, Wang H Y, Ye Q F, Lü L. Uptake, translocation, and distribution of root –applied [C ring-U-14C]-ZJ0273 in plants of oilseed rape and rice. Journal of Nuclear Agricultural Sciences, 2009, 23(4): 676-680. (in Chinese)

[18]Yang Y T, Peredelchuk M, Bennett G N, San K Y. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnology and Bioengineering, 2000, 69(2): 150-159.

[19]Leyval D, Uy D, Delaunay S, Goergen J L, Engasser J M. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. Journal of Biotechnology, 2003, 104: 241-252.

[20]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.

[21]朱广廉, 钟海文, 张爱琴. 植物生理学实验. 北京: 北京大学出版社, 1990: 161-165.

Zhu G L, Zhong H W, Zhang A Q. Plant Physiological Experiment. Beijing: Beijing University Press, 1990: 161-165. (in Chinese)

[22]Abbaspoor M, Teicher H B, Streibig J C. The effect of root-absorbed PSII inhibitors on Kautsky curve parameters in sugar beet. Weed Research, 2006, 46(3): 226-235.

[23]Rhodes D, Hogan A L, Deal L, Jamieson G C, Haworth P. Amino acid metabolism of Lemna minor L. II Response to chlorsulfuron. Plant Physiology, 1987, 84: 775-780.

[24]LaRossa R A, Van Dyk T K, Smulski D R. Toxic accumulation of аlpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. Journal of Bacteriology, 1987, 169(4): 1372-1378.

[25]Orcaray L, Igal M, Marino D, Zabalza A, Royuela M. The    possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Management Science, 2010, 66(3): 262-269.

[26]Frankart C, Eullaffroy P, Vernet G. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environmental and Experimental Botany, 2003, 49(2): 159-168.

[27]马树华, 王庆成, 李亚藏. 汽车尾气对四种北方阔叶树叶绿素荧光特性的影响. 生态学杂志, 2005, 24(1): 15-20.

Ma S H, Wang Q C, Li Y C. Effects of automobile exhaust on chlorophyll fluorescence characters of four northern deciduous trees. Chinese Journal of Ecology, 2005, 24(1): 15-20. (in Chinese)

[28]Fai P B, Grant A, Reid B. Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environmental Toxicology and Chemistry, 2007, 26(7): 1520-1531.

[29]Fayez K A, Kristen U. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps. Environmental and Experimental Botany, 1996, 36(1): 71-81.

[30]Anderson P C, Hibberd K A. Evidence for interaction of an imidazolinone herbicide with leucine, valine, and isolucine metabolism. Weed Science, 1985, 33: 479-483.

[31]Ray T B. Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis in plants. Plant Physiology, 1984, 75: 827-831.

[32]张  泉, 黄建中, 杨征敏, 朱其松, 叶庆富, 吕  龙, 徐步进, 陈子元. 小麦微粒体对丙酯草醚的代谢作用初探. 核农学报, 2008, 22(1): 84-87.

Zhang Q, Huang J Z, Yang Z M, Zhu Q S, Ye Q F, Lü L, Xu B J, Chen Z Y. Preliminary study on metabolism of pyribambenz-propyl by wheat microsomes. Journal of Nuclear Agriculture Sciences, 2008, 22(1): 84-87. (in Chinese)

[33]曾庆平, 郭  勇. 化学应激对大蒜培养细胞SOD的诱导. 药物生物技术, 1999, 6(2): 95-98.

Zeng Q P, Guo Y. Induction of SOD by chemical stress in cultured garlic cells. Pharmaceutical Biotechnology, 1999, 6(2): 95-98. (in Chinese)

[34]Gaston S, Ribas-Carbo M, Busquets S, Berry J A, Zabalza A, Royueal M. Changes in mitochondrial electron partitioning in response to herbicides inhibiting branched-chain amino acid biosynthesis in soybean. Plant Physiology, 2003, 133: 1351-1359.
[1] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[2] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[3] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[4] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[5] GONG Qiang,WANG Ke,YE XingGuo,DU LiPu,XU YanHao. Generation of Marker-Free Transgenic Barley Plants by Agrobacterium-Mediated Transformation [J]. Scientia Agricultura Sinica, 2020, 53(18): 3638-3649.
[6] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[7] BAI YiXiong, ZHENG XueQing, YAO YouHua, YAO XiaoHua, WU KunLun. Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources [J]. Scientia Agricultura Sinica, 2019, 52(23): 4201-4214.
[8] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[9] LI Jian, FENG XianHong, CAI YiLin. Coefficient of Parentage Analysis Among Naked Barley Varieties in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2758-2767.
[10] LI JiangPeng,LIU HaiJun,HUANG ZhiWu,LIU XiaoYing,YOU Jie,XU ZhiGang. Effects of Spectral Distribution on Photosynthetic and Chlorophyll Fluorescence Characteristics of Flag Leaves at Grain Filling Stage in Rice [J]. Scientia Agricultura Sinica, 2019, 52(16): 2768-2775.
[11] YANG Fei, ZHANG AiHong, MENG FanSi, HUO LiangZhan, LI XiWang, DI DianPing, MIAO HongQin. Distribution and Genetic Diversity of Barley yellow striate mosaic virus in Northern China [J]. Scientia Agricultura Sinica, 2018, 51(2): 279-289.
[12] HOU WeiHai, WANG JianLin, HU Dan, FENG XiBo. Effects of Drought in Post-Flowering on Leaf Water Potential, Photosynthetic Physiology, Seed Phenotype and Yield of Hulless Barley in Tibet Plateau [J]. Scientia Agricultura Sinica, 2018, 51(14): 2675-2688.
[13] HE Jun, TIAN XinZhu, WANG XueDong, LIU Bin, LI Ning, ZHENG Han, MENG Nan, CHEN ShiBao. Zn-Toxicity Thresholds as Determined by Micro Morphological Endpoints of Barley Roots in Polluted Soils and Its Prediction Models [J]. Scientia Agricultura Sinica, 2017, 50(7): 1263-1270.
[14] WANG JianLin, ZHONG ZhiMing, FENG XiBo, FU Gang, HOU WeiHai, WANG GaiHua, Da-cizhuoga. Spatial Distribution Regulation of Protein Content of Naked Barley Varieties and Its Relationships with Environmental Factors in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 969-977.
[15] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!