Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (17): 3616-3623 .doi: 10.3864/j.issn.0578-1752.2010.17.016

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Study on Animal Model of Allergy Provoked by Ginkgo Kernel Protein

YANG Jian-ting, WU Cai-e, LI Ying-ying, JIA Shao-qian, FAN Gong-jian, PAN Hong-mei
  

  1. (南京林业大学森林资源与环境学院)
  • Received:2010-03-26 Revised:2010-06-16 Online:2010-09-01 Published:2010-09-01
  • Contact: WU Cai-e

Abstract:

【Objective】 Mouse model of allergic reaction induced by ginkgo kernel protein was studied for the allergen assessment. 【Method】 Taking Tris-HCl buffer solution as negative control and ovalbumin as positive control, different group of mice were sensitized by two doses of ginkgo kernel protein and controls orally on days 0, 7 and 14 d, and challenged intraperitioneally at 7 d after the last sensitization. 【Result】 The result showed there were high level of IgE and IgG in ginkgo kernel protein group and positive control group, histamine release rate after challenged in vitro was higher significantly than the negative control. During the immune time, histamine in plasma was increased. There were inflammatory focuses in intestines, lungs and livers in mice treated with thinner dose of ginkgo kernel protein, and also in kidneys of mice treated with thicker dose of gingko kernel protein and the positive control. 【Conclusion】 This model may be used to research IgE (Immunoglobin E)-mediatedⅠtype allergy in mice caused by ginkgo kernel protein.

Key words: gingko kernel, protein, allergy, mouse, model

[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[5] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[6] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[7] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[8] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[9] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[10] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[11] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[12] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[13] WANG ShuTing,KONG YuGuang,ZHANG Zan,CHEN HongYan,LIU Peng. SPAD Value Inversion of Cotton Leaves Based on Satellite-UAV Spectral Fusion [J]. Scientia Agricultura Sinica, 2022, 55(24): 4823-4839.
[14] DENG YuanJian,CHAO Bo. Provincial Agricultural Ecological Efficiency and Its Influencing Factors in China from the Perspective of Grey Water Footprint [J]. Scientia Agricultura Sinica, 2022, 55(24): 4879-4894.
[15] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!