Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (11): 4058-4063 .doi: 10.3864/j.issn.0578-1752.2009.11.037

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Correlation of C184T Mutation in THRSP Gene with Meat Traits in the Qinchuan Cattle

ZHANG Xiao-bai, ZAN Lin-sen, WANG Hong-bao, HAO Rui-jie, YANG Yan-jie
  

  1. (西北农林科技大学动物科技学院)
  • Received:2009-06-19 Revised:2009-07-23 Online:2009-11-10 Published:2009-11-10
  • Contact: ZAN Lin-sen

Abstract:

【Objective】 The study aimed at analysis of a C/T missense mutation founded by direct sequencing at THRSP gene exon1 184 bp locus and investigations of the correlation of the SNP with some meat traits in Qinchuan cattle. 【Method】 Four hundred and five Qinchuan cattles without genetic relationship at age of 18-20 months were selected in this study, and the cattle were kept under the same condition. Individual genotypes of THRSP gene were analyzed by PCR-SSCP method.General linear model (GLM) of SPSS statistical software was used to study the correlation between this SNP and partial meat traits of 93 Qinchuan cattle. 【Result】 This mutation leads to a missense mutation from Val (GTG) to Ala (GCG) at the 51th amino acid. In this locus, PIC (polymorphism information content) is 0.3583, belongs to moderate polymorphisms, He (heterozygosity) is 0.4676, Ne (number of effective allele) is 1.8783. The chi-square test showed that this locus is not in Hardy-Weinberg equilibrium (P<0.01). Correlation analysis revealed that genotype in this locus has a significant correlation with tenderness and WHC (water holding capacity) traits. Multi-comparison indicated that the tenderness of AA genotype individual is significantly higher than that of AB (P<0.05), and the WHC of BB is significantly higher than AB (P<0.05). 【Conclusion】 This locus is a potential major QTN that affects tenderness and WHC or tightly linked to it, it could be a candidate molecular marker for the beef cattle breeding.

Key words: THRSP gene, PCR-SSCP, Qinchuan cattle, molecular marker

[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[6] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[7] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[8] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[9] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[10] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[11] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[12] GUO HongFang,NING Yue,CHENG Gong,ZAN LinSen. The Effect of Krüppel-Like Factor 3 (KLF3) Gene on Bovine Fat Deposition [J]. Scientia Agricultura Sinica, 2019, 52(7): 1272-1281.
[13] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[14] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[15] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!