Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Functional identification of Medicago truncatula MtRAV1 in regulating growth and development
Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long
2025, 24 (5): 1944-1957.   DOI: 10.1016/j.jia.2023.12.032
Abstract52)      PDF in ScienceDirect      

Related to ABI3 and VP1 (RAV) transcription factors belong to the AP2 and B3 superfamily.  RAVs genes have been reported to be involved in plant growth and development regulation.  This study screened three RAV genes from Medicago truncatula and named one of them MtRAV1.  The MtRAV1 overexpressing plants exhibits traits such as plant dwarfing, delayed flowering, reduced leaf and floral organs, increased branching, and reduced pods and seeds.  Gene expression analysis results showed that overexpression of MtRAV1 inhibited the expression of Flowering Locus T (MtFTa1), Suppressor of Overexpression of CO 1 (MtSOC1), GA3-oxidase1 (MtGA3OX1), DWARF14 (MtD14) and Carotenoid Cleavage Dioxygenase 7 (MtCCD7).  To further investigate the regulation pathway involved by MtRAV1, RNA-sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analysis were conducted.  RNA-seq results indicated that MtRAV1 might affect plant growth and development by regulating some genes in photosynthesis, circadian rhythm and plant hormone signaling pathways, especially the auxin signaling pathway.  Conjoint analysis of DAP-seq and RNA-seq revealed that MtRAV1 might inhibit the expression of Ferredoxin (MtFd-l3), Light-harvesting Chlorophyll a/b Binding Protein 1 (MtLhcb-l2) and Small Auxin Up-regulated RNA (MtSAUR-l), which related to photosystem II and auxin signaling pathway.  Summarily, MtRAV1 was preliminarily proven to be a key growth inhibitory factor in Mtruncatula.

Reference | Related Articles | Metrics
Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd2 causes loss of conidiation and pathogenicity in Pyricularia oryzae
Wenqin Fang, Yonghe Hong, Tengsheng Zhou, Yangdou Wei, Lili Lin, Zonghua Wang, Xiaohan Zhu
2025, 24 (2): 638-654.   DOI: 10.1016/j.jia.2024.05.021
Abstract78)      PDF in ScienceDirect      

Oxidation of self-stored carbohydrates and lipids provides the energy for the rapid morphogenetic transformation during asexual and infection-related development in Pyricularia oryzae, which results in intracellular accumulation of reducing equivalents NADH and FADH2, requiring a cytosolic shuttling machinery towards mitochondria.  Our previous studies identified the mitochondrial D-lactate dehydrogenase MoDld1 as a regulator to channel the metabolite flow in conjunction with redox homeostasis.  However, the regulator(s) facilitating the cytosolic redox balance and the importance in propelling nutrient metabolite flow remain unknown.  The G-3-P shuttle is a conserved machinery transporting the cytosolic reducing power to mitochondria.  In Poryzae, the mitochondrial G-3-P dehydrogenase Gpd2 was required for cellular NAD+/NADH balance and fungal virulence.  In this study, we re-locate the mitochondrial G-3-P dehydrogenase Gpd2 to the cytosol for disturbing cytosolic redox status.  Our results showed overexpression of cytosolic gpd2Δmts without the mitochondrial targeted signal (MTS) driven by Ribosomal protein 27 promoter (PR27) exerted conflicting regulation of cellular oxidoreductase activities compared to the ΔModld1 deletion mutant by RNA-seq and prevented the conidiation and pathogenicity of Poryzae.  Moreover, overexpression of gpd2Δmts caused defects in glycogen and lipid mobilization underlying asexual and infectious structural development associated with decreased cellular NADH production and weakened anti-oxidation activities.  RNA-seq and non-targeted metabolic profiling revealed down-regulated transcriptional activities of carbohydrate metabolism and lower abundance of fatty acids and secondary metabolites in RP27:gpd2Δmts.  Thus, our studies indicate the essential role of cytosolic redox control in nutrient metabolism fueling the asexual and infection-related development in Poryzae.

Reference | Related Articles | Metrics
Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling
Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia
2024, 23 (9): 2989-3011.   DOI: 10.1016/j.jia.2024.01.012
Abstract171)      PDF in ScienceDirect      
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming, which seriously threatens the productivity and quality of several horticultural crops, including pear.  Gibberellins (GAs) play crucial roles in plant growth, development, and responses to drought stress.  Previous studies have shown significant reductions of GA levels in plants under drought stress; however, our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.  Here, we show that drought stress can impair the accumulation of bioactive GAs (BGAs), and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.  This gene was significantly induced by drought stress and abscisic acid (ABA) treatment, but was suppressed by GA3 treatment.  PbrGA2ox1-overexpressing transgenic tobacco plants (Nicotiana benthamiana) exhibited enhanced tolerance to dehydration and drought stresses, whereas knock-down of PbrGA2ox1 in pear (Pyrus betulaefolia) by virus-induced gene silencing led to elevated drought sensitivity.  Transgenic plants were hypersensitive to ABA, and had a lower BGAs content, enhanced reactive oxygen species (ROS) scavenging ability, and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.  However, the opposite effects were observed with PbrGA2ox1 silencing in pear.  Moreover, exogenous GA3 treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling, resulting in the compromised drought tolerance of pear.  In summary, our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress, providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.


Reference | Related Articles | Metrics
Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae
Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin
2024, 23 (8): 2686-2702.   DOI: 10.1016/j.jia.2023.06.028
Abstract172)      PDF in ScienceDirect      
Blast disease, caused by the hemibiotrophic ascomycete fungus, Magnaporthe oryzae, is a significant threat to sustainable rice production worldwide.  Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.  However, the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.  Here, we reported that a putative mitochondrial targeting non-classically secreted protein (MoMtp) positively regulates conidiogenesis and appressorium maturation in Moryzae.  Moreover, MoMTP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of Moryzae.  In addition, cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.  Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection, indicating its possible regulatory role in host invasion and the infectious development of M. oryzae.  Furthermore, Agrobacterium infiltration and sheath inoculation confirmed that MoMtp-GFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.  Taken together, we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of Moryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.
Reference | Related Articles | Metrics
A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening
Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu
2024, 23 (8): 2633-2648.   DOI: 10.1016/j.jia.2024.03.068
Abstract80)      PDF in ScienceDirect      
The flesh color of pummelo (Citrus maxima) fruits is highly diverse and largely depends on the level of carotenoids, which are beneficial to human health.  It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.  However, the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.  In this study, we identified a novel histone methyltransferase gene, CgSDG40, involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo, red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.  Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.  Interestingly, CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions, sharing a partially overlapping promoter region.  Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.  Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.  In addition, expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.  Taken together, our findings reveal a novel histone methyltransferase regulator, CgSDG40, involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality.
Reference | Related Articles | Metrics

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L.

Minghao Cai, Xuhui Li, Zhi Liang, Jie Wang, Delin Li, Zhipeng Yuan, Riliang Gu, Jianhua Wang, Li Li
2024, 23 (4): 1118-1133.   DOI: 10.1016/j.jia.2023.05.004
Abstract173)      PDF in ScienceDirect      

The seed storage materials accumulate during seed development, and are essential for seed germination and seedling establishment.  Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220 (I220, small seeds with low starch) and PH4CV (large seeds with high starch), as well as recombinant-inbred lines (RILs) of X178 (high starch) and its improved introgression line I178 (low starch), to identify the genes that control seed storage materials.  We identified a total of 12 QTLs for starch, protein and oil, which explained 3.44–10.79% of the phenotypic variances.  Among them, qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314–9.554 Mb, and they explained 3.44–10.21% of the starch content variation, so they were selected for further study.  Fine mapping of qSTA2-2 with the backcrossed populations of I220/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames (ORFs).  Transcriptomic analysis of developing seeds from the near-isogenic lines (NILs) of I220/PH4CV (BC5F2) showed that only 11 ORFs were expressed in 20 days after pollination (DAP) seeds.  Five of them were upregulated and six of them were downregulated in NILI220, and the differentially expressed genes (DEGs) between NILI220 and NILPH4CV were enriched in starch metabolism, hormone signal transduction and glycosaminoglycan degradation.  Of the eleven NILI220 differential expressed ORFs, ORF4 (Zm00001d002260) and ORF5 (Zm00001d002261) carry 75% protein sequence similarity, both encodes an glycolate oxidase, were the possible candidates of qSTA2-2.  Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation, the embryo/endosperm ratio and the starch and hormone levels.

Reference | Related Articles | Metrics

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L.

Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan
2024, 23 (2): 724-730.   DOI: 10.1016/j.jia.2023.05.001
Abstract187)      PDF in ScienceDirect      
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.  In the present study, we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.  Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.  Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.  The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development, and thereby causing the yellow seed trait in Bnapus.  These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
Reference | Related Articles | Metrics

The role of cAMP-dependent protein kinase A in the formation of long-term memory in Bactrocera dorsalis

Jinxin Yu, Yanmin Hui, Jiayi He, Yinghao Yu, Zhengbing Wang, Siquan Ling, Wei Wang, Xinnian Zeng, Jiali Liu
2024, 23 (2): 605-620.   DOI: 10.1016/j.jia.2023.07.016
Abstract154)      PDF in ScienceDirect      

The cAMP-dependent protein kinase A (PKA) signaling pathway has long been considered critical for long-term memory (LTM) formation.  Previous studies have mostly focused on the role of PKA signaling in LTM induction by multiple spaced conditioning with less attention to LTM induction by a single conditioning.  Here, we conducted behavioral-pharmacology, enzyme immunoassay and RNA interference experiments to study the role of the PKA signaling pathway in LTM formation in the agricultural pest Bactrocera dorsalis, which has a strong memory capacity allowing it to form a two-day memory even from a single conditioning trial.  We found that either blocking or activating PKA prior to conditioning pretreatment affected multiple spaced LTM, and conversely, they did not affect LTM formed by single conditioning.  This was further confirmed by enzyme-linked immunosorbent assay (ELISA) and silencing of the protein kinase regulatory subunit 2 and catalytic subunit 1.  Taken together, these results suggest that activating PKA during memory acquisition helps to induce the LTM formed by multiple spaced conditioning but not by a single conditioning.  Our findings challenge the conserved role of PKA signaling in LTM, which provides a basis for the greater diversity of molecular mechanisms underlying LTM formation across species, as well as possible functional and evolutionary implications.

Reference | Related Articles | Metrics
Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition
Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang
2024, 23 (12): 4216-4236.   DOI: 10.1016/j.jia.2024.02.020
Abstract99)      PDF in ScienceDirect      

Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions, thereby affecting straw decomposition in the soil.  However, the mechanisms underlying changes in soil organic carbon (SOC) composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear.  In this study, we conducted an in-situ microplot incubation experiment with 13C-labeled soybean straw residue addition in a two-factor (cropping pattern: sugarcane monoculture (MS) and sugarcane/soybean intercropping (SB); nitrogen addition levels: reduced nitrogen addition (N1) and conventional nitrogen addition (N2)) long-term experimental field plot.  The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon (POC) and residual microbial biomass carbon (MBC) contents during straw decomposition, and the straw carbon in soil was mainly conserved as POC.  Straw addition changed the structure and reduced the diversity of the soil microbial community, but microbial diversity gradually recovered with decomposition time.  During straw decomposition, the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota.  In addition, straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern.  Nevertheless, microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment.  In general, the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition, and the changes in microbial communities were mainly driven by the residual labile SOC fractions.  These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.


Reference | Related Articles | Metrics
The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems
Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu
2024, 23 (10): 3592-3609.   DOI: 10.1016/j.jia.2024.01.031
Abstract80)      PDF in ScienceDirect      
Soil microorganisms play critical roles in ecosystem function.  However, the relative impact of the potassium (K) fertilizer gradient on the microbial community in wheat‒maize double-cropping systems remains unclear.  In this long-term field experiment (2008–2019), we researched bacterial and fungal diversity, composition, and community assemblage in the soil along a K fertilizer gradient in the wheat season (K0, no K fertilizer; K1, 45 kg ha−1 K2O; K2, 90 kg ha−1 K2O; K3, 135 kg ha−1 K2O) and in the maize season (K0, no K fertilizer; K1, 150 kg ha−1 K2O; K2, 300 kg ha−1 K2O; K3, 450 kg ha−1 K2O) using bacterial 16S rRNA and fungal internally transcribed spacer (ITS) data.  We observed that environmental variables, such as mean annual soil temperature (MAT) and precipitation, available K, ammonium, nitrate, and organic matter, impacted the soil bacterial and fungal communities, and their impacts varied with fertilizer treatments and crop species.  Furthermore, the relative abundance of bacteria involved in soil nutrient transformation (phylum Actinobacteria and class Alphaproteobacteria) in the wheat season was significantly increased compared to the maize season, and the optimal K fertilizer dosage (K2 treatment) boosted the relative bacterial abundance of soil nutrient transformation (genus Lactobacillus) and soil denitrification (phylum Proteobacteria) bacteria in the wheat season.  The abundance of the soil bacterial community promoting root growth and nutrient absorption (genus Herbaspirillum) in the maize season was improved compared to the wheat season, and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation (genus MND1) and soil nitrogen cycling (genus Nitrospira) genera in the maize season.  The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient, and microhabitats explained the largest amount of the variation in crop yields, and improved wheat‒maize yields by 11.2–22.6 and 9.2–23.8% with K addition, respectively.  These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.


Reference | Related Articles | Metrics
GbLMI1 over-expression improves cotton aboveground vegetative growth
Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang
2024, 23 (10): 3457-3467.   DOI: 10.1016/j.jia.2023.05.037
Abstract131)      PDF in ScienceDirect      
Leaves are the main organ for photosynthesis and organic synthesis in cotton.  Leaf shape has important effects on photosynthetic efficiency and canopy formation, thereby affecting cotton yield.  Previous studies have shown that LMI1 (LATE MERISTEM IDENTITY1) is the main gene regulating leaf shape.  In this study, the LMI1 gene was inserted into the 35S promoter expression vector, and cotton plants overexpressing LMI1 (OE) were obtained through genetic transformation.  Statistical analysis of the biological traits of the T1 and T2 populations showed that compared to the wild type (WT), OE plants had significantly larger leaves, thicker stems and significantly greater dry weight.  Furthermore, plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.  In addition, RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family (genes containing the NAC domain) between the OE and WT plants, suggesting that LMI1 is involved in secondary wall formation and cell proliferation, which promotes stem thickening.  Moreover, Gene Ontology (GO) analysis revealed enrichment in the terms of calcium ion binding, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment in the terms of fatty acid degradation, phosphatidylinositol signal transduction system, and cAMP (cyclic adenosine monophosphate) signal pathway.  These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals, and have altered messenger signals (cAMP, Ca2+) which amplify this function, to promote stronger aboveground vegetative growth.  This study found the LMI1 greatly increased the vegetative growth in cotton, which is the basic requirement for higher yield.


Reference | Related Articles | Metrics
Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress
Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su
2024, 23 (10): 3370-3386.   DOI: 10.1016/j.jia.2024.01.035
Abstract59)      PDF in ScienceDirect      
Activity of bc1 complex kinase (ABC1K) is an atypical protein kinase (aPK) that plays a crucial role in plant mitochondrial and plastid stress responses, but little is known about the responses of ABC1Ks to stress in cotton (Gossypium spp.).  Here, we identified 40 ABC1Ks in upland cotton (Gossypium hirsutum L.) and found that the GhABC1Ks were unevenly distributed across 17 chromosomes.  The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.  The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.  The qRT-PCR results revealed that most GhABC1Ks were upregulated by exposure to different stresses.  GhABC1K2-A05 and GhABC1K12-A07 expression levels were upregulated by at least three stress treatments.  These genes were further functionally characterized by virus-induced gene silencing (VIGS).  Compared with the controls, the GhABC1K2-A05- and GhABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde (MDA) contents, lower catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.  In addition, the expression levels of six stress marker genes (GhDREB2A, GhSOS1, GhCIPK6, GhSOS2, GhWRKY33, and GhRD29A) were significantly downregulated after stress in the GhABC1K2-A05- and GhABC1K12-A07-silenced lines.  The results indicate that knockdown of GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress.  These findings can provide valuable information for intensive studies of GhABC1Ks in the responses and resistance of cotton to abiotic stresses.


Reference | Related Articles | Metrics
GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae 
Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao
2024, 23 (10): 3343-3357.   DOI: 10.1016/j.jia.2024.05.017
Abstract94)      PDF in ScienceDirect      
Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.  Therefore, the mining of Vdahlia-resistance genes is urgently needed.  Proteases and protease inhibitors play crucial roles in plant defense responses.  However, the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.  This study provides a comprehensive analysis of the PR6 gene family in the cotton genome. We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family, which belongs to the potato protease inhibitor I family of inhibitors.  Thirty-nine PR6s were identified in Gossypium arboreum, Graimondii, Gbarbadense, and Ghirsutum, and they were clustered into four groups.  Based on the analysis of pathogen-induced and Ghlmm transcriptome data, GhPR6-5b was identified as the key gene for Vdahliae resistance. Virus-induced gene silencing experiments revealed that cotton was more sensitive to Vdahliae V991 after PR6-5b silencing.  The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).  Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to Vdahliae, and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against Vdahliae.


Reference | Related Articles | Metrics
Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates
YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi
2023, 22 (9): 2673-2686.   DOI: 10.1016/j.jia.2023.02.016
Abstract191)      PDF in ScienceDirect      
The effect of nitrogen (N) fertilizer on the development of maize kernels has yet to be fully explored.  MicroRNA-mRNA analyses could help advance our understanding of how kernels respond to N.  This study analyzed the morphological, physiological, and transcriptomic changes in maize kernels under different N rates (0, 100, 200, and 300 kg ha–1).  The result showed that increasing N application significantly increased maize grains’ fresh and dry weight until N reached 200 kg ha–1.  Higher levels of indole-3-acetic acid, cytokinin, gibberellin, and a lower level of ethylene were associated with increased N applications.  We obtained 31 differentially expressed genes (DEGs) in hormone synthesis and transduction, and 9 DEGs were regulated by 14 differentially expressed microRNAs (DEMIs) in 26 pairs.  The candidate DEGs and DEMIs provide valuable insight for manipulating grain filling under different N rates.
Reference | Related Articles | Metrics
Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection
LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng
2023, 22 (6): 1750-1762.   DOI: 10.1016/j.jia.2022.10.010
Abstract266)      PDF in ScienceDirect      

Rice stripe disease, caused by rice stripe virus (RSV) which is transmitted by small brown planthopper (SBPH, Laodelphax striatellus Fallen), resulted in serious losses to rice production during the last 2 decades.  Research on the molecular differences between resistant and susceptible rice varieties and the interaction between rice and RSV remains inadequate.  In this study, RNA-Seq was used to analyze the transcriptomic differences between the resistant and susceptible rice varieties at different times post RSV infection.  Through Gene Ontology (GO) annotation, the differentially expressed genes (DEGs) related to transcription factors, peroxidases, and kinases of 2 varieties at 3 time points were identified.  Comparing these 2 varieties, the DEGs associated with these 3 GOs were numerically less in the resistant variety than in the susceptible variety, but the expression showed a significant up- or down-regulation trend under the conditions of |log2(Fold change)|>0 & Padj<0.05 by significance analysis.  Then through Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs involved in some pathways that have a contribution to disease resistance including plant hormone signal transduction and plant–pathogen interaction were found.  The results showed that resistance responses regulated by abscisic acid (ABA) and brassinosteroids (BR) were the same for 2 varieties, but that mediated by salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) were different.  The DEGs in resistant and susceptible varieties at the 3 time points were identified in both PAMP-triggered immunity (PTI) and Effector protein-triggered immunity (ETI), with that most of the unigenes of the susceptible variety were involved in PTI, whereas most of the unigenes of the resistant variety were involved in ETI.  These results revealed the different responses of resistant and susceptible varieties in the transcription level to RSV infection.

Reference | Related Articles | Metrics

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple

XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo
2023, 22 (6): 1704-1719.   DOI: 10.1016/j.jia.2023.04.033
Abstract292)      PDF in ScienceDirect      

Cold stress is an important factor that limits apple production.  In this study, we examined the tissue-cultured plantlets of apple rootstocks ‘M9T337’ and ‘60-160’, which are resistant and sensitive to cold stress, respectively.  The enriched pathways of differentially expressed genes (DEGs) and physiological changes in ‘M9T337’ and ‘60-160’ plantlets were clearly different after cold stress (1°C) treatment for 48 h, suggesting that they have differential responses to cold stress.  The differential expression of WRKY transcription factors in the two plantlets showed that MdWRKY40is and MdWRKY48 are potential regulators of cold tolerance.  When we overexpressed MdWRKY40is and MdWRKY48 in apple calli, the overexpression of MdWRKY48 had no significant effect on the callus, while MdWRKY40is overexpression promoted anthocyanin accumulation, increased callus cold tolerance, and promoted the expression of anthocyanin structural gene MdDFR and cold-signaling core gene MdCBF2.  Yeast one-hybrid screening and electrophoretic mobility shift assays showed that MdWRKY40is could only bind to the MdDFR promoter.  Yeast two-hybrid screening and bimolecular fluorescence complementation showed that MdWRKY40is interacts with the CBF2 inhibitor MdMYB15L through the leucine zipper (LZ).  When the LZ of MdWRMY40is was knocked out, MdWRKY40is overexpression in the callus did not affect MdCBF2 expression or callus cold tolerance, indicating that MdWRKY40is acts in the cold signaling pathway by interacting with MdMYB15L.  In summary, MdWRKY40is can directly bind to the MdDFR promoter in order to promote anthocyanin accumulation, and it can also interact with MdMYB15L to interfere with its inhibitory effect on MdCBF2, indirectly promoting MdCBF2 expression, and thereby improving cold tolerance.  These results provide a new perspective for the cold-resistance mechanism of apple rootstocks and a molecular basis for the screening of cold-resistant rootstocks.

Reference | Related Articles | Metrics
Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties
LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia
2023, 22 (5): 1338-1350.   DOI: 10.1016/j.jia.2022.08.033
Abstract210)      PDF in ScienceDirect      

Indica hybrid rice (Oryza sativa) production aims to achieve two crucial targets: high yield and good taste.  This study selected three types of indica hybrid rice according to grain yield and taste value, including high yield and good taste (HYGT), low yield and good taste (LYGT), and high yield and poor taste (HYPT), to analyze yield components, corresponding growth characteristics, and rice taste quality.  When values were averaged across varieties and years, there were almost no differences in taste value between HYGT and LYGT; HYGT showed a significant increase in yield, owing to a higher number of panicles and spikelets per panicle, with a respective increment of 16.2 and 20.6%.  The higher grain yield of HYGT compared with LYGT was attributed to three key factors: a higher leaf area index (LAI) during heading, a higher ratio of grain to leaf, and a higher biomass accumulation at maturity.  HYGT and HYPT achieved similar high yields; however, HYGT had more panicle numbers and lower grain weight.  In addition, HYGT showed a significantly higher taste value than HYPT, attributed to its significantly lower protein and amylose contents, with reductions of 8.8 and 15.7%, respectively.  Lower protein and amylose contents might be caused by a proper matter translocation from vegetative organs to panicle.  This study suggested that reasonable panicle characteristics and translocation efficiency from vegetative organs to panicle during heading to maturity are the key factors in balancing yield and rice taste quality.  These results will provide valuable insights for rice breeders to improve the grain yield and quality of indica hybrid rice.

Reference | Related Articles | Metrics
Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau
WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel
2023, 22 (5): 1277-1290.   DOI: 10.1016/j.jia.2022.09.023
Abstract349)      PDF in ScienceDirect      

The fully mulched ridge–furrow (FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize (Zea mays L.) productivity and rainfall use efficiency.  However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run.  Therefore, it is necessary to optimize the system for the sustainable development of agriculture.  The development, yield-increasing mechanisms, negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper.  We suggest using grain and forage maize varieties instead of regular maize; mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film; combining reduced/no-tillage with straw return; utilizing crop rotation or intercropping with winter canola (Brassica campestris L.), millet (Setaria italica), or oilseed flax (Linum usitatissimum L.); reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer; using biodegradable or weather-resistant film; and implementing mechanized production.  These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote high-quality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.

Reference | Related Articles | Metrics

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch

ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun
2023, 22 (4): 1045-1057.   DOI: 10.1016/j.jia.2023.01.005
Abstract233)      PDF in ScienceDirect      

To achieve the dual goals of high yield and good quality with low environmental costs, slow-release fertilizer (SRF) has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.  However, the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.  This study was designed to investigate the photosynthetic characteristics and the synthesis, accumulation, and physicochemical properties of lotus rhizome starches under six SRF levels (CK, S1, S2, S3, S4, and S5).  Compared with CK (0 kg ha–1), the net photosynthetic rate (Pn) and SPAD values of leaves remained at higher levels under SRF treatment.  Further research showed that SRF increased the lotus rhizome yield, the contents of amylose, amylopectin, and total starch, and the number of starch granules.  Among the six SRF levels, S3 (1 035 kg ha–1) showed the greatest difference from CK and produced the highest levels.  With the increasing SRF levels, the peak, hot and final viscosities decreased at first and then increased, but the setback viscosity and pasting temperature increased.  In order to interpret these changes at the molecular level, the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.  Each of these parameters also increased under SRF treatment, especially under the S3 treatment.  The results of this study show that SRF, especially S3 (1 035 kg ha–1), is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.  These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.

Reference | Related Articles | Metrics
Derivation and validation of soil total and extractable cadmium criteria for safe vegetable production
LI Li-jun, LI Kun, JIANG Bao, LI Ju-mei, MA Yi-bing
2023, 22 (12): 3792-3803.   DOI: 10.1016/j.jia.2023.05.008
Abstract112)      PDF in ScienceDirect      
Determining the appropriate soil cadmium (Cd) criteria for vegetable production is important for ensuring that the Cd concentrations of the vegetables meet food safety standards. The soil extractable Cd criteria for vegetable production are also essential for both food safety and environmental management, especially in areas with a high natural background level. In the present study, soil total and extractable Cd criteria were derived using the approach of species sensitivity distribution integrated with soil aging and bioavailability as affected by soil properties. A dataset of 90 vegetable species planted in different soils was compiled by screening the published in literature in five bibliographic databases using designated search strings. The empirical soil–plant transfer model was applied to normalize the bioaccumulation data. After normalization, the intra-species variability was reduced by 18.3 to 84.4%. The soil Cd concentration that would protect 95% (HC5) of the species was estimated by species sensitivity distribution curves that were fitted by the Burr III function. The soil Cd criteria derived from the added approach for risk assessment were proposed as continuous criteria based on a combination of organic carbon and pH in the soil. Criteria for total Cd and EDTA-extractable Cd in the soil ranged from 0.23 to 0.61 mg kg–1 and from 0.09 to 0.25 mg kg–1, respectively. Field experimental data were used to validate the applicability and validity of these criteria. Most of the predicted HC5 values in the field experimental sites were below the 1:1 line. These results provide a scientific basis for soil Cd criteria for vegetable production that will ensure food safety.
Reference | Related Articles | Metrics
Comprehensive analysis of the full-length transcripts and alternative splicing involved in clubroot resistance in Chinese cabbage
SU He-nan, YUAN Yu-xiang, YANG Shuang-juan, WEI Xiao-chun, ZHAO Yan-yan, WANG Zhi-yong, QIN Liu-yue, YANG Zhi-yuan, NIU Liu-jing, LI Lin, ZHANG Xiao-wei
2023, 22 (11): 3284-3295.   DOI: 10.1016/j.jia.2022.09.014
Abstract197)      PDF in ScienceDirect      

Chinese cabbage is an economically important Brassica vegetable worldwide, and clubroot, which is caused by the soil-borne protist plant pathogen Plasmodiophora brassicae is regarded as a destructive disease to Brassica crops.  Previous studies on the gene transcripts related to Chinese cabbage resistance to clubroot mainly employed RNA-seq technology, although it cannot provide accurate transcript assembly and structural information.  In this study, PacBio RS II SMRT sequencing was used to generate full-length transcriptomes of mixed roots at 0, 2, 5, 8, 13, and 22 days after Pbrassicae infection in the clubroot-resistant line DH40R.  Overall, 39 376 high-quality isoforms and 26 270 open reading frames (ORFs) were identified from the SMRT sequencing data.  Additionally, 426 annotated long noncoding RNAs (lncRNAs), 56 transcription factor (TF) families, 1 883 genes with poly(A) sites and 1 691 alternative splicing (AS) events were identified.  Furthermore, 1 201 of the genes had at least one AS event in DH40R.  A comparison with RNA-seq data revealed six differentially expressed AS genes (one for disease resistance and five for defensive response) that are potentially involved in Pbrassicae resistance.  The results of this study provide valuable resources for basic research on clubroot resistance in Chinese cabbage.

Reference | Related Articles | Metrics

PpMAPK6 regulates peach bud endodormancy release through interactions with PpDAM6

ZHANG Yu-zheng, XU Chen, LU Wen-li, WANG Xiao-zhe, WANG Ning, MENG Xiang-guang, FANG Yu-hui, TAN Qiu-ping, CHEN Xiu-de, FU Xi-ling, LI Ling
2023, 22 (1): 139-148.   DOI: 10.1016/j.jia.2022.09.010
Abstract205)      PDF in ScienceDirect      

The MADS-box (DAM) gene PpDAM6, which is related to dormancy, plays a key role in bud endodormancy release, and the expression of PpDAM6 decreases during endodormancy release.  However, the interaction network that governs its regulation of the endodormancy release of flower buds in peach remains unclear.  In this study, we used yeast two-hybrid (Y2H) assays to identify a mitogen-activated protein kinase, PpMAPK6, that interacts with PpDAM6 in a peach dormancy-associated SSHcDNA library.  PpMAPK6 is primarily located in the nucleus, and Y2H and bimolecular fluorescence complementation (BiFC) assays verified that PpMAPK6 interacts with PpDAM6 by binding to the MADS-box domain of PpDAM6.  Quantitative real-time PCR (qRT-PCR) analysis showed that the expression of PpMAPK6 was opposite that of PpDAM6 in the endodormancy release of three cultivars with different chilling requirements (Prunus persica ‘Chunjie’, Prunus persica var. nectarina ‘Zhongyou 5’, Prunus persica ‘Qingzhou peach’).  In addition, abscisic acid (ABA) inhibited the expression of PpMAPK6 and promoted the expression of PpDAM6 in flower buds.  The results indicated that PpMAPK6 might phosphorylate PpDAM6 to accelerate its degradation by interacting with PpDAM6.  The expression of PpMAPK6 increased with decreasing ABA content during endodormancy release in peach flower buds, which in turn decreased the expression of PpDAM6 and promoted endodormancy release.

Reference | Related Articles | Metrics
Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background
XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua
2023, 22 (1): 52-62.   DOI: 10.1016/j.jia.2022.08.094
Abstract196)      PDF in ScienceDirect      

Agropyron cristatum (2n=4x=28, PPPP) is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.  Wheat–Acristatum 2P alien translocation lines exhibit many desirable traits, such as small flag leaves, a high spikelet number and density, and a compact plant type.  An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.  The results showed that a translocation fragment from 2PT-3 (2PL) reduced the length of the flag leaves, while translocation fragments from 2PT-3 (2PL) and 2PT-5 (2PL (0.60–1.00)) reduced the width of the flag leaves.  A translocation fragment from 2PT-13 (2PS (0.18–0.36)) increased the length and area of the flag leaves.  Translocation fragments from 2PT-3 (2PL) and 2PT-8 (2PL (0.86–1.00)) increased the density of spikelets.  Translocation fragments from 2PT-7 (2PL (0.00–0.09)), 2PT-8 (2PL (0.86–1.00)), 2PT-10 (2PS), and 2PT-13 (2PS (0.18–0.36)) reduced plant height.  This study provides a scientific basis for the effective utilization of wheat–Acristatum translocation lines.

Reference | Related Articles | Metrics
The mechanism and heterogeneity of environmental regulations’ impact on the technological progress of dairy farming
LIU Hao, PENG Hua, LI Li-wang, DONG Xiao-xia
2022, 21 (10): 3067-3081.   DOI: 10.1016/j.jia.2022.07.053
Abstract110)      PDF in ScienceDirect      
The study analyses the theoretical mechanism through which environmental regulation affects the dairy industry’s technological progress, with a particular focus on how the effect is conditional on farm size.  Using the input–output data of dairy farms of different sizes from 2009 to 2019 in 10 Chinese provinces/autonomous regions in China and the quantitative measurement index of environmental regulation, the study estimates environmental regulation’s heterogeneous influences on the dairy industry’s technological progress by dynamic panel data models.  The empirical results suggest that, first, environmental regulation has a U-type influence on the technological progress of dairy farming.  The U-type influence means moving from pollution control’s high cost and low technology progress to the high profit and high innovation input generated by optimizing the breeding structure.  Second, the promotion of dairy farming technology depends on farm size.  The effect of environmental regulation on technological progress in moderately large-farms showed a U-type relationship.  In contrast, the effect in free-range and large-size dairy farms showed a linear and positive relationship.  The government should further strengthen environmental regulation based on advancing moderately large-farms in compliance with market mechanisms in the long run.  Particular attention should be paid to the forms of environmental regulation so that dairy cattle breeding technology can break through the inflection point of the “U” curve as soon as possible and ensure the significance of the rising stage.  Along the way, technical support should be provided for realizing environmental protection and economic growth.
Reference | Related Articles | Metrics
Kaempferol inhibits Pseudorabies virus replication in vitro through regulation of MAPKs and NF-κB signaling pathways
CHEN Xu, CHEN Ya-qin, YIN Zhong-qiong, WANG Rui, HU Huai-yue, LIANG Xiao-xia, HE Chang-liang, YIN Li-zi, YE Gang, ZOU Yuan-feng, LI Li-xia, TANG Hua-qiao, JIA Ren-yong, SONG Xu
2021, 20 (8): 2227-2239.   DOI: 10.1016/S2095-3119(20)63477-3
Abstract196)      PDF in ScienceDirect      
Pseudorabies virus (PRV), in the family Herpesviridae, is a pathogen of Aujeszky’s disease, which causes great economic losses to the pig industry.  Recent outbreaks of Pseudorabies imply that new control measures are urgently needed.  The present study shows that kaempferol is a candidate drug for controlling PRV infection, as it possesses the ability to inhibit PRV replication in a dose-dependent manner in vitro.  Kaempferol at a concentration of 52.40 μmol L–1 could decrease PRV-induced cell death by 90%.  With an 50% inhibitory concentration (IC50) value of 25.57 μmol L–1, kaempferol was more effective than acyclovir (positive control) which has an IC50 value of 54.97 μmol L–1.  A mode of action study indicated that kaempferol inhibited viral penetration and replication stages, decreasing viral loads by 4- and 30-fold, respectively.  Addition of kaempferol within 16 h post infection (hpi) could significantly inhibit virus replication, and viral genome copies were decreased by almost 15-fold when kaempferol was added at 2 hpi.  Kaempferol regulated the NF-κB and MAPKs signaling pathways involved in PRV infection and changed the levels of the target genes of the MAPKs (ATF-2 and c-Jun) and NF-κB (IL-1α, IL-1β and IL-2) signaling pathways.  The findings of the current study suggest that kaempferol could be an alternative measure to control PRV infection.
Reference | Related Articles | Metrics
The river chief system and agricultural non-point source water pollution control in China
ZHOU Li, LI Ling-zhi, HUANG Ji-kun
2021, 20 (5): 1382-1395.   DOI: 10.1016/S2095-3119(20)63370-6
Abstract148)      PDF in ScienceDirect      
As part of their efforts to control water pollution, local governments in China introduced the river chief system, whereby a named individual undertakes responsibility for protecting a specified waterway.  As one of the most prominent sources of water pollution, agricultural non-point-source (NPS) pollution is becoming increasingly serious.  Determining whether the river chief system, an institutional reform in China’s decentralized environmental regulation regime, is effective in alleviating NPS pollution is important for the realization of green development.  The effect of the river chief system on reducing agricultural NPS pollution is explored in this study using panel data from 308 Chinese counties during the period from 2004 to 2015.  The results reveal that the negative impact of manure output from animal breeding operations on surface water quality is reduced with the implementation of the river chief system.  However, the river chief system is ineffective in dealing with the water pollution caused by fertilizer use.  Furthermore, in the current system, cooperation among river chiefs only occurs within a province.  Local governments should increase their efforts in reducing fertilizer source loads and preventing fertilizer loads from entering surface waters.  In addition, the central government should improve cooperation among the river chiefs in upstream and downstream provinces.
Reference | Related Articles | Metrics
Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China 
GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng
2021, 20 (12): 3186-3198.   DOI: 10.1016/S2095-3119(20)63421-9
Abstract187)      PDF in ScienceDirect      
China is a center of diversity for Malus Mill. with 27 native species including 21 wild species and six domesticated species.  We applied a set of 19 simple sequence repeat markers to genotype 798 accessions of 17 species (12 wild species and five cultivated species) of Malus originating from 14 provinces in China.  A total of 500 alleles were detected.  Diversity statistics indicated a high level of genetic variation as quantified by the average values of the effective allele number (Ne), expected heterozygosity (He), and Shannon’s Information Index (I) (10.309, 0.886, and 2.545, respectively).  Malus sieversii (MSR; He=0.814, I=2.041, Ne=6.054), M. baccata (MBB; He=0.848, I=2.350, Ne=8.652), M. toringoides (MTH; He=0.663, I=1.355, Ne=3.332), and M. hupehensis (MHR; He=0.539, I=0.912, Ne=0.579) showed a higher level of genetic diversity in this study than the previous studies.  MSR and MBB contributed to the origin and evolution of some accessions of M. domestica subsp. chinensis (MDC).  However, other accessions of MDC showed a closer genetic distance with MBB and cultivated species, especially M. robusta (MRB), M. asiatica (MAN), and M. prunifolia (MPB).  Not all accessions of MDC were descended from MSR in Xinjiang Uygur Autonomous Region of China.  This research provides novel insights into the genetic relationships of Malus native to China, which will be useful for genetic association studies, germplasm conservation, and breeding programs.
 
Reference | Related Articles | Metrics
Development and characterization of new allohexaploid resistant to web blotch in peanut
WANG Si-yu, LI Li-na, FU Liu-yang, LIU Hua, QIN Li, CUI Cai-hong, MIAO Li-juan, ZHANG Zhong-xin, GAO Wei, DONG Wen-zhao, HUANG Bing-yan, ZHENG Zheng, TANG Feng-shou, ZHANG Xin-you, DU Pei
2021, 20 (1): 55-64.   DOI: 10.1016/S2095-3119(20)63228-2
Abstract101)      PDF in ScienceDirect      
Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem.  In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong (Slh) cultivar with Arachis duranensis (ZW55), a diploid wild species.  Seedlings were generated by embryo rescue and tissue culture.  A true interspecific hybrid was then confirmed by cytological methods and molecular markers.  After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210.  With oligonucleotide fluorescence in situ hybridization (Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55; 2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats; 3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis.  In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.
 
Reference | Related Articles | Metrics
Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain
CAI Dong-yu, YAN Hai-jun, LI Lian-hao
2020, 19 (9): 2326-2339.   DOI: 10.1016/S2095-3119(19)62877-7
Abstract136)      PDF in ScienceDirect      
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP).  The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot.  In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS; the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE.  The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively.  While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%.  The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05); however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively.  The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient.  The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments.  The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons.  Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE.  However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers.  Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP. 
Reference | Related Articles | Metrics
Effects of light-emitting diodes on tissue culture plantlets and seedlings of rice (Oryza sativa L.)
YU Lan-lan, SONG Chang-mei, SUN Lin-jing, LI Li-li, XU Zhi-gang, TANG Can-ming
2020, 19 (7): 1743-1754.   DOI: 10.1016/S2095-3119(19)62793-0
Abstract128)      PDF in ScienceDirect      
Light-emitting diodes (LEDs) are a new light source with low energy consumption and high photoelectric conversion efficiency, and they can satisfy the energy-saving needs of plant culture systems.  However, the effects of LED light sources on rice tissue culture and rice seedling cultivation are poorly understood.  This study aimed to evaluate the effects of LEDs on the growth of tissue culture plantlets and seedlings of the rice (Oryza sativa L.) cultivar Nipponbare.  The best light source for rice tissue culture was different from that for rice seedling cultivation.  Blue (B) LED light was the most appropriate light for rice tissue culture.  Under a B LED light, the time required for callus proliferation, differentiation and regeneration was the shortest, and the frequency of plantlet initiation, differentiation and regeneration was the highest.  A blue:red (B:R)=1:1 LED light facilitated the growth of rice seedlings and produced the highest chlorophyll and carotenoid contents and photosynthetic rates in the rice seedlings.  Abundant photosynthetic products were more effectively generated in the rice seedlings under the B:R=1:1 LED and R LED lights than under the B LED light.  B LED light is the most appropriate light for rice tissue culture plantlets and can be used as an alternative light source for rice tissue culture, and B:R=1:1 LED light facilitated the cultivation of robust rice seedlings and can be used as the primary light source for rice factory seedling cultivation.
 
Reference | Related Articles | Metrics