Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3457-3467    DOI: 10.1016/j.jia.2023.05.037
Section 2: Cotton biotechnology Advanced Online Publication | Current Issue | Archive | Adv Search |
GbLMI1 over-expression improves cotton aboveground vegetative growth
Zhili Chong1, 2*, Yunxiao Wei2*, Kaili Li2, Muhammad Aneeq Ur Rahman2, Chengzhen Liang2, Zhigang Meng2, Yuan Wang2, Sandui Guo2, Liangrong He1#, Rui Zhang2#
1 College of Agronomy, Tarim University, Alar 843300, China 
2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  棉花叶片是光合作用和有机物质合成的主要场所。叶形对光合效率和冠层形成具有重要影响,进而影响棉花产量。研究表明LMI1是调控叶形的关键基因。本研究利用35S启动子构建LMI1基因过表达载体,转化至棉花并获得了LMI1过表达植株。对过表达T1T2代植株田间性状统计分析,发现过表达植株叶片显著增大、茎变粗和干重显著增加。叶脉和叶柄的徒手切片观察发现过表达植株细胞数量显著增加。此外,转录组分析发现赤霉素合成通路NAC基因家族相关的基因差异表达,推测LMI1参与了细胞壁形成和细胞增殖,进而促进了茎变粗GO富集分析在钙离子结合条目KEGG富集分析在脂肪酸降解、磷脂酰肌醇信号转导系统和cAMP信号途径通路。结果表明,LMI1过表达植株响应赤霉素信号,通过第二信使信号(cAMPCA2+),进而增强功能,促进植物营养生长。本研究为探究LMI1促进棉花营养生长,进而提高产量提供理论基础。

Abstract  
Leaves are the main organ for photosynthesis and organic synthesis in cotton.  Leaf shape has important effects on photosynthetic efficiency and canopy formation, thereby affecting cotton yield.  Previous studies have shown that LMI1 (LATE MERISTEM IDENTITY1) is the main gene regulating leaf shape.  In this study, the LMI1 gene was inserted into the 35S promoter expression vector, and cotton plants overexpressing LMI1 (OE) were obtained through genetic transformation.  Statistical analysis of the biological traits of the T1 and T2 populations showed that compared to the wild type (WT), OE plants had significantly larger leaves, thicker stems and significantly greater dry weight.  Furthermore, plant sections of the main vein and petiole showed that the numbers of cells in those tissues of OE plants were significantly greater.  In addition, RNA-seq analysis revealed the differential expression of genes related to gibberellin synthesis and NAC gene family (genes containing the NAC domain) between the OE and WT plants, suggesting that LMI1 is involved in secondary wall formation and cell proliferation, which promotes stem thickening.  Moreover, Gene Ontology (GO) analysis revealed enrichment in the terms of calcium ion binding, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment in the terms of fatty acid degradation, phosphatidylinositol signal transduction system, and cAMP (cyclic adenosine monophosphate) signal pathway.  These results suggested that LMI1 OE plants are responsive to gibberellin hormone signals, and have altered messenger signals (cAMP, Ca2+) which amplify this function, to promote stronger aboveground vegetative growth.  This study found the LMI1 greatly increased the vegetative growth in cotton, which is the basic requirement for higher yield.


Keywords:  LMI1        over-expressing        cotton        vegetative growth  
Received: 15 March 2023   Accepted: 22 May 2023
Fund: 
This study was supported by the National Natural Science Foundation of China (5201101621).  
About author:  #Correspondence Rui Zhang, E-mail: zhangrui@caas.cn; Liangrong He, E-mail: hlrzky@163.com * These authors contributed equally to this study.

Cite this article: 

Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. 2024. GbLMI1 over-expression improves cotton aboveground vegetative growth. Journal of Integrative Agriculture, 23(10): 3457-3467.

Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T. 2012. The renaissance of Ca2+-binding proteins in the nervous system secretagogin takes center stage. Cellular Signaling24, 378–387.

Andries J A, Jones J E, Sloane L W, Marshall J G. 1970. Effects of super okra leaf shape on boll rot, yield, and other characters of upland cotton, Gossypium hirsutum L. Crop Science9, 403–407.

Baker D N, Myhre D L. 1969. Effects of leaf shape and boundary layer thickness on photosynthes is in cotton (Gossypium hirsutum). Physiologia Plantarum22, 1043–1049.

Brodskiy P A, Wu Q, Soundarrajan D K, Huizar F J, Chen J, Liang P, Narciso C, Levis M K, Arredondo-Walsh N, Chen D Z, Zartman J J. 2019. Decoding calcium signaling dynamics during drosophila wing disc development. Biophysical Journal116, 725–740.

Chakraborty R, Roy S. 2019. Evaluation of the diversity and phylogenetic implications of NAC transcription factor members of four reference species from the different embryophytic plant groups. Physiology and Molecular Biology of Plants252, 347–359.

Chang L J, Fang L, Zhu Y J, Wu H, Zhang Z Y, Liu C X, Li X H, Zhang T Z. 2016. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene-regulating leaf shape. Genetics, 204, 799–806.

Chee P W, Lubbers E, Kuraparthy V, Andres R J, Bowman D T, Lawrence K S, Myers G. 2013. Effect of leaf shape on boll rot incidence in upland cotton (Gossypium hirsutuni). International Journal of Plant Breeding and Genetics7, 132–138.

Cox K L, Meng F, Wilkins, K E, Li F, Wang P, Booher N J, Carpenter S, Chen L Q, Zheng H, Gao X, Zheng Y, Fei Z, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications8, 15588.

Guttridge C G, Thompson P A. 1959. Effect of gibberellic acid on length and number of epidermal cells in petioles of strawberry. Nature183, 197–198.

He D F, Zhao X, Liang C Z, Zhu T, Abid M A, Cai Y P., He J, Zhang R. 2018. Genetic variation in LBL1 contributes to depth of leaf blades lobes between cotton subspecies, Gossypium barbadense and Gossypium hirsutumJournal of Integrative Agriculture17, 2394–2404.

Hedden P, Phillips A L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science5, 523–530.

He P, Zhang H, Zhang L, Jiang B, Xiao G, Yu J. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

Heng S, Meiling H, Jianying L, Lin C, Meng L, Shuqin Z, Xianlong Z, Xiyan Y. 2018. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology18, 150.

Karami E, Weaver J B. 1980. Dry-matter production, yield, photosynthesis, chlorophyll content and specific leaf weight of cotton in relation to leaf shape and colour. Journal of Agricultural Science94, 281–286.

Kenta Y, Hisae N, Yusuke Y, Kouki H. 2018. The role of biomass allocation between lamina and petioles in a game of light competition in a dense stand of an annual plant. Annals of Botany, 121, 1055–1064.

Lersten N R, Horner H T. 2006. Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves. Annals of Botany97, 723–729.

Li H L, Ma Y B, Luo X L, Wu X, Wang X S. 2020. The effect of exogenous silicon on expression of stress related transcription factors in soybean under adverse. Soybean Science39, 352–360. (in Chinese)

Lira B S, Gramegna G, Trench B A, Alves F, Silva E M, Silva G, Thirumalaikumar V P, Lupi A, Demarco D, Purgatto E, Nogueira F, Balazadeh S, Freschi L, Rossi M. 2017. Manipulation of a senescence-associated gene improves fleshy fruit yield. Plant Physiology175, 77–91.

Lisa G, Omar R, Domenico M, Atiako K A, Marco M, Lorenzo C, Urska V, Claudio M. 2013, Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: Functional characterization and evolution of grapevine gibberellin oxidases. Journal of Experimental Botany, 64, 4403–4419.

Liu J, Meng Y, Chen B, Zhou Z, Ma Y, Lv F, Chen J, Wang Y. 2015. Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Acta Physiologiae Plantarum37, 79.

Louis A S, Bärbel H, Staver B, Yanhui S, Cara M W, Chang S K, Richard P C, Doris W A. 2006. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWERDevelopment133, 1673–1682.

Lü S K, Ma X L, Zhang M, Deng P C, Chen C H, Zhang H, Liu X L, Ji W Q. 2021. Post-transcriptional regulation of Ta NAC genes by alternative splicing and microRNA in common wheat (Triticum aestivum L.). Scientia Agricultura Sinica54, 4709–4727. (in Chinese)

Joke B, Dorota H, Frederik C, Jolien D B, Bram S, Matteo D A, Mario E P, Steven M, Hilde N, Dirk I. 2015. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize ril population. Genome Biology16, 168.

Jon M W, Shabtai C. 1996. Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany47, 1335–1342.

Macmillan J. 2001. Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation20, 387–442.

Nicotra A B, Leigh A, Boyce C K, Jones C S, Niklas K J, Royer D L, Tsukaya H. 2011. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology38, 535–552.

Ohya Y, Ohsumi Y, Anraku Y. 1984. Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: A calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Molecular & General Genetics193, 389–394.

Pettigrew W T, Heitholt J J, Vaughn K C. 1993. Gas exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Science33, 1295–1299.

Ramachandran P V, Savini M, Folick A K, Hu K, Masand R, Graham B H, Wang M C. 2019. Lysosomal signaling promotes longevity by adjusting mitochondrial activity. Developmental Cell48, 685–696.

Siso, Camarero J J, Gil-Pelegrin. 2001. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees-Structfunct15, 341–345.

Stephens S G. 1945. A genetic survey of leaf shape in new world cottons - A problem in critical identification of alleles. Journal of Genetics46, 313–330.

Su H P, Nari Y, Shic K Y, Min H J, Seung W B, Do C Y, Ju K K. 2010. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany61, 2459–2467.

Tata S K, Jung J, Kim Y H, Choi J Y, Jung J Y, Lee I J, Shin J S, Ryu S B. 2016. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnology Journal14, 29–39.

Thomson N J, Reid P E, Williams E R. 1987. Effects of the okra leaf, nectariless, frego bract and glabrous conditions on yield and quality of cotton lines. Euphytica36, 545–553.

Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore R W, Kuang H. 2022. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. Plant Biotechnol Journal20, 1756–1769.

Wei S, Wang X, Jiang D, Dong S. 2018. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biology18, 378.

Wu J, Wang L, Wang S. 2016. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biology16, 193.

Xu Q, Krishnan S, Merewitz E, Xu J, Huang B. 2016. Gibberellin-regulation and genetic variations in leaf elongation for tall fescue in association with differential gene expression controlling cell expansion. Scientific Reports6, 30258.

Yu X, Xie W, Liu H, Liu W, Zeng D, Qian Q, Ren D. 2022. Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice. Journal of Integrative Agriculture21, 3103–3113.

Zhang Q, Zheng X Y, Lin S X, Gu C Z, Li L, Li J Y, Fang C X, He H B. 2019. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Rice12, 30.

Zhu Y, Yuan G, Jia S, An G, Li W, Sun D, Liu J. 2022. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development. Journal of Integrative Agriculture21, 407–421.

[1] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
No Suggested Reading articles found!