Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
GbLMI1 over-expressing improved cotton aboveground vegetative growth
CHONG Zhi-li1, 2*, WEI Yun-xiao2*, LI Kai-li2, Muhammad Aneeq Ur Rahman2, LIANG Cheng-zhen2, MENG Zhi-gang2, WANG Yuan2, GUO San-dui2, HE Liang-rong1#, ZHANG Rui2#

1 College of Agronomy, Tarim University, Alar 843300, P.R.China 

2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

棉花叶片是光合作用和有机物质合成的主要场所。叶形对光合效率和冠层形成具有重要影响,进而影响棉花产量。研究表明LMI1是调控叶形的关键基因。本研究利用35S启动子构建LMI1基因过表达载体,转化至棉花并获得了LMI1过表达植株。对过表达T1T2代植株田间性状统计分析,发现过表达植株叶片显著增大、茎变粗和干重显著增加。叶脉和叶柄的徒手切片观察发现过表达植株细胞数量显著增加。此外,转录组分析发现赤霉素合成通路NAC基因家族相关的基因差异表达,推测LMI1参与了细胞壁形成和细胞增殖,进而促进了茎变粗GO富集分析在钙离子结合条目KEGG富集分析在脂肪酸降解、磷脂酰肌醇信号转导系统和cAMP信号途径通路。结果表明,LMI1过表达植株响应赤霉素信号,通过第二信使信号(cAMPCA2+),进而增强功能,促进植物营养生长。本研究为探究LMI1促进棉花营养生长,进而提高产量提供理论基础。



Abstract  

Leaves are the main places for photosynthesis and organic synthesis of cotton.  Leaf shape has important effects on the photosynthetic efficiency and canopy formation, thereby affecting cotton yield.  Previous studies have shown that LMI1 is the main gene regulating leaf shape. In this study, the LMI1 gene (LATE MERISTEM IDENTITY1) was inserted into the 35S promoter expression vector, and cotton plants overexpressing LMI1(OE) were obtained through genetical transformation.  Statistical analysis of the biological traits of T1 and T2 populations showed that compared to wild type (WT), OE plants had significant larger leaves, thicker stems and significantly increased dry weight.  Furthermore, plant sections of the main vein and petiole showed that the number of cell in those tissues of OE plants increased significantly.  In addition, RNA-seq analysis revealed differential expression of genes related to gibberellin synthesis and NAC gene family (genes containing the NAC domain) in OE and WT plants, suggesting that LMI1 is involved in secondary wall formation and cell proliferation, and promotes stem thickening.  Moreover, GO (Gene Ontology) analysis enriched the terms of calcium ion binding, and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis enriched the terms of fatty acid degradation, phosphatidylinositol signal transduction system, and cAMP signal pathway.  These results suggested that LMI1 OE plants were responsive to gibberellin hormone signals, and altered messenger signal (cAMP, Ca2+) which amplified this function, to promote the stronger above ground vegetative growth.  This study found the LMI1 soared the nutrient growth in cotton, which is the basic for higher yield.

Keywords:  LMI1              over-expressing              cotton              vegetative growth  
Online: 25 May 2023  
Fund: This study was supported by the National Natural Science Foundation of China (5201101621). This work was performed at the China-Pakistan Joint Laboratory for Cotton Biotechnology, Beijing, China.
About author:  #Correspondence ZHANG Rui, E-mail: zhangrui@caas.cn, HE Liang-rong, E-mail: hlrzky@163.com * These authors contributed equally to this work.

Cite this article: 

CHONG Zhi-li, WEI Yun-xiao, LI Kai-li, Muhammad Aneeq Ur Rahman, LIANG Cheng-zhen, MENG Zhi-gang, WANG Yuan, GUO San-dui, HE Liang-rong, ZHANG Rui. 2023. GbLMI1 over-expressing improved cotton aboveground vegetative growth. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.05.037

Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T. 2012. The renaissance of Ca2+-binding proteins in the nervous system secretagogin takes center stage. Cellular Signaling, 24, 378-387.

Andries J A, Jones J E, Sloane L W, Marshall J G. 1970. Effects of super okra leaf shape on boll rot, yield, and other characters of Upland cotton, Gossypium hirsutum L.11. Crop Science, 9, 403-407.

Baker D N, Myhre D L. 1969. Effects of leaf shape and boundary layer thickness on photosynthes is in cotton (Gossypium hirsutum). Physiologia Plantarum, 22, 1043-1049.

Brodskiy P A, Wu Q, Soundarrajan D K, Huizar F J, Chen J, Liang P, Narciso C, Levis M K, Arredondo-Walsh N, Chen D Z, Zartman J J. 2019. Decoding calcium signaling dynamics during drosophila wing disc development. Biophysical Journal, 116, 725-740.

Chakraborty R, Roy S. 2019. Evaluation of the diversity and phylogenetic implications of NAC transcription factor members of four reference species from the different embryophytic plant groups. Physiology and Molecular Biology of Plants an International Journal of Functional Plant Biology, 252, 347-359.

Chang L J, Fang L, Zhu Y J, Wu H, Zhang Z Y, Liu C X, Li X H, Zhang T Z. 2016. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene-regulating leaf shape. Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation, 204, 799-806. 

Chee P W, Lubbers E, Kuraparthy V, Andres R J, Bowman D T, Lawrence K S, Myers G. 2013. Effect of leaf shape on boll rot incidence in upland cotton (Gossypium hirsutuni). International Journal of Plant Breeding and Genetics, 7, 132-138.

Cox K L, Meng F, Wilkins, K E, Li F, Wang P, Booher N J, Carpenter S, Chen L Q, Zheng H, Gao X, Zheng Y, Fei Z, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 8, 15588.

Guttridge C G, Thompson P A. 1959. Effect of gibberellic acid on length and number of epidermal cells in petioles of strawberry. Nature, 183, 197-198.

He D F, Zhao X, Liang C Z, Zhu T, Abid M A, Cai Y P., He J, Zhang R. 2018. Genetic variation in LBL1 contributes to depth of leaf blades lobes between cotton subspecies, Gossypium barbadense and Gossypium hirsutum. Journal of Integrative Agriculture, 17, 2394-2404.

Hedden P, Phillips A L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523-530.

He P, Zhang H, Zhang L, Jiang B, Xiao G, Yu J. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture. 21, 1563-1575.

Heng S, Meiling H, Jianying L, Lin C, Meng L, Shuqin Z, Xianlong Z, Xiyan Y. 2018. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biology, 18, 150.

Karami E, Weaver J B. 1980. Dry-matter production, yield, photosynthesis, chlorophyll content and specific leaf weight of cotton in relation to leaf shape and colour. Journal of Agricultural Science, 94, 281-286.

Kenta Y, Hisae N, Yusuke Y, Kouki H. 2018. The role of biomass allocation between lamina and petioles in a game of light competition in a dense stand of an annual plant. Annals of Botany, 121, 1055-1064.

Lersten N R, Horner H T. 2006. Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves. Annals of Botany, 97, 723-729.

Li H L, Ma Y B, Luo X L, Wu X, Wang X S. 2020. The effect of exogenous silicon on expression of stress related transcription factors in soybean under adverse. Soybean Science, 39, 352-360.

Lira B S, Gramegna G, Trench B A, Alves F, Silva E M, Silva G, Thirumalaikumar V P, Lupi A, Demarco D, Purgatto E, Nogueira F, Balazadeh S, Freschi L, Rossi M. 2017. Manipulation of a senescence-associated gene improves fleshy fruit yield. Plant Physiology, 175, 77–91.

Lisa G, Omar R, Domenico M, Atiako K A, Marco M, Lorenzo C, Urska V, Claudio M. 2013, Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. Journal of Experimental Botany, 64, 4403-4419.

Liu J, Meng Y, Chen B, Zhou Z, Ma Y, Lv F, Chen J, Wang Y. 2015. Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Acta Physiologiae Plantarum, 37, 79.

Louis A S, Bärbel H, Staver B, Yanhui S, Cara M W, Chang S K, Richard P C, Doris W A. 2006.The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133, 1673-1682.

Lü S K, Ma X L, Zhang M, Deng P C, Chen C H, Zhang H, Liu X L, Ji W Q. 2021. Post-transcriptional regulation of Ta NAC genes by alternative splicing and microRNA in common wheat (Triticum aestivum L.). Scientia Agricultura Sinica, 54, 4709-4727. (in Chinese)

Joke B, Dorota H, Frederik C, Jolien D B, Bram S, Matteo D A, Mario E P, Steven M, Hilde N, Dirk I. 2015. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize ril population. Genome Biology, 16, 168.

Jon M W, Shabtai C. 1996. Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47, 1335-1342.

Macmillan J. 2001. Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20, 387-442.

Nicotra A B, Leigh A, Boyce C K, Jones C S, Niklas K J, Royer D L, Tsukaya H. 2011. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38, 535-552.

Ohya Y, Ohsumi Y, Anraku Y. 1984. Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: A calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Molecular & General Genetics, 193, 389-394.

Pettigrew W T, Heitholt J J, Vaughn K C. 1993. Gas exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Science, 33, 1295-1299.

Ramachandran P V, Savini M, Folick A K, Hu K, Masand R, Graham B H, Wang M C. 2019. Lysosomal signaling promotes longevity by adjusting mitochondrial activity. Developmental Cell, 48, 685-696.

Siso, Camarero J J, Gil-Pelegrin. 2001. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: A new interpretation of leaf lobation. Trees-Structfunct, 15, 341-345.

Stephens S G. 1945. A genetic survey of leaf shape in new world cottons—A problem in critical identification of alleles. Journal of Genetics, 46, 313-330.

Su H P, Nari Y, Shic K Y, Min H J, Seung W B, Do C Y, Ju K K. 2010. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany, 61, 2459-2467.

Tata S K, Jung J, Kim Y H, Choi J Y, Jung J Y, Lee I J, Shin J S, Ryu S B. 2016. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnology Journal, 14, 29-39.

Thomson N J, Reid P E, Williams E R. 1987. Effects of the okra leaf, nectariless, frego bract and glabrous conditions on yield and quality of cotton lines. Euphytica, 36, 545-553.

Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore R W, Kuang H. 2022. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. Plant Biotechnol Journal, 20, 1756-1769.

Wei S, Wang X, Jiang D, Dong S. 2018. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biology, 18, 378.

Wu J, Wang L, Wang S. 2016. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biology, 16, 193.

Xu Q, Krishnan S, Merewitz E, Xu J, Huang B. 2016. Gibberellin-regulation and genetic variations in leaf elongation for tall fescue in association with differential gene expression controlling cell expansion. Scientific Reports, 6, 30258.

Yu X, Xie W, Liu H, Liu W, Zeng D, Qian Q, Ren D. 2022. Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice. Journal of Integrative Agriculture. 21, 3103-3113.


Zhang Q, Zheng X Y, Lin S X, Gu C Z, Li L, Li J Y, Fang C X, He H B. 2019. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Rice (New York, N.Y.), 12, 30.

Zhu Y, Yuan G, Jia S, An G, Li W, Sun D, Liu J. 2022. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development. Journal of Integrative Agriculture, 21, 407-421.

No related articles found!
No Suggested Reading articles found!