Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2673-2686    DOI: 10.1016/j.jia.2023.02.016
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates

YUE Kai1, 2, LI Ling-ling1, 2#, XIE Jun-hong1, 2, Zechariah EFFAH3, Sumera ANWAR4, 5, WANG Lin-lin1, 2, MENG Hao-feng1, 2, LI Lin-zhi6

1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, P.R.China
2 State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, P.R.China
3 Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso 00233, Ghana
4 Department of Biosciences, Durham University, Durham DH1 3LE, UK 
5 Department of Botany, Government College, Women University, Faisalabad 38000, Pakistan
6 College of Resources and Environment Science, Gansu Agricultural University, Lanzhou 730070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

氮肥对玉米籽粒发育的影响未得到充分研究。microRNAsmRNAs联合分析有助于加深我们对氮素调控玉米籽粒发育的理解。在本研究中,我们分析了不同施氮量0 kg ha-1100 kg ha-1200 kg ha-1300 kg ha-1)下玉米籽粒的形态、生理和转录组变化。结果表明,增加施氮显著增加了玉米籽粒的鲜重和干重,但施氮量超过200 kg ha-1时,籽粒的鲜重和干重没有显著增加。总来说,生长素、细胞分裂素和赤霉素的含量随着施氮量的增加而增加,而乙烯的含量降低。我们在激素合成和传导过程中获得了31个差异表达基因(DEGs),其中9DEGs14个差异表达microRNAsDEMIs)调节,共形成26个表达对本研究中候选的DEGsDEMIs为不同施氮量下的玉米籽粒发育提供了有价值的见解。



Abstract  The effect of nitrogen (N) fertilizer on the development of maize kernels has yet to be fully explored.  MicroRNA-mRNA analyses could help advance our understanding of how kernels respond to N.  This study analyzed the morphological, physiological, and transcriptomic changes in maize kernels under different N rates (0, 100, 200, and 300 kg ha–1).  The result showed that increasing N application significantly increased maize grains’ fresh and dry weight until N reached 200 kg ha–1.  Higher levels of indole-3-acetic acid, cytokinin, gibberellin, and a lower level of ethylene were associated with increased N applications.  We obtained 31 differentially expressed genes (DEGs) in hormone synthesis and transduction, and 9 DEGs were regulated by 14 differentially expressed microRNAs (DEMIs) in 26 pairs.  The candidate DEGs and DEMIs provide valuable insight for manipulating grain filling under different N rates.
Keywords:  maize kernels       phytohormones       high-throughput sequencing       microRNA  
Received: 20 September 2022   Accepted: 22 December 2022
Fund: This research was supported by the Major Special Research Projects in Gansu Province, China (22ZD6NA009), the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2022-Z02), the National Natural Science Foundation of China (32260549), and the National Key R&D Program of China (2022YFD1900300). 


About author:  #Correspondence LI Ling-ling, Tel: +86-931-7631234, E-mail: lill@gsau.edu.cn

Cite this article: 

YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. 2023. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates. Journal of Integrative Agriculture, 22(9): 2673-2686.

An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H. 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Research22, 915–927.

Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. 2014. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant and Cell Physiology55, 897–912.

Bari R, Jones J D. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology69, 473–488.

Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. 2019. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. Plant Science281, 133–145.

Bot A, José B. 2005. The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food and Agriculture Organization of the United Nations, No. 80.

Burg S P, Burg E A. 1965. Ethylene action and the ripening of fruits: Ethylene influences the growth and development of plants and is the hormone which initiates fruit ripening. Science148, 1190–1196.

Cao J, Li G, Qu D, Li X, Wang Y. 2020. Into the seed: auxin controls seed development and grain yield. International Journal of Molecular Sciences21, 1662.

Chang K N, Zhong S, Weirauch M T, Hon G, Pelizzola M, Li H, Huang S C, Schmitz R J, Urich M A, Kuo D, Nery J R, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes T R, Ecker J R. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife2, e00675.

Effah Z, Li L, Xie J, Karikari B, Liu C, Xu A, Zeng M. 2022. Transcriptome profiling reveals major structural genes, transcription factors and biosynthetic pathways involved in leaf senescence and nitrogen remobilization in rainfed spring wheat under different nitrogen fertilization rates. Genomics114, 110271.

Good A G, Shrawat A K, Muench D G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science9, 597–605.

Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature414, 271–276.

Hodge A, Robinson D, Fitter A. 2000. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science5, 304–308.

Hou G, Du C, Gao H, Liu S, Sun W, Lu H, Kang J, Xie Y, Ma D, Wang C. 2020. Identification of microRNAs in developing wheat grain that are potentially involved in regulating grain characteristics and the response to nitrogen levels. BMC Plant Biology20, 1–21.

Jin X, Fu Z, Lv P, Peng Q, Ding D, Li W, Tang J. 2015. Identification and characterization of microRNAs during maize grain filling. PLoS ONE10, e0125800.

Kuan K B, Othman R, Abdul R K, Shamsuddin Z H. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE11, e0152478.

Kumar R, Agarwal P, Tyagi A K, Sharma A K. 2012. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum L.). Molecular Genetics and Genomics287, 221–235.

Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Liu R, Kan Y. 2016. Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS ONE11, e0153168.

Li G H, Cheng G G, Lu W P, Lu D L. 2021. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. Journal of Integrative Agriculture20, 554–564.

Li J S, Fu F L, An M, Zhou S F, She Y H, Li W C. 2013. Differential expression of microRNAs in response to drought stress in maize. Journal of Integrative Agriculture12, 1414–1422.

Li Y, Yang L, Wang H, Xu R, Chang S, Hou F, Jia Q. 2019. Nutrient and planting modes strategies improves water use efficiency, grain-filling and hormonal changes of maize in semi-arid regions of China. Agricultural Water Management223, 105723.

Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell23, 1815–1829.

Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C. 2015. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America112, 11102–11107.

Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G. 2008. Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics91, 378–387.

Liu Y, Sui Y, Gu D, Wen X, Chen Y, Li C, Liao Y. 2013. Effects of conservation tillage on grain filling and hormonal changes in wheat under simulated rainfall conditions. Field Crops Research144, 43–51.

Liu Y E, Liu P, Dong S T, Zhang J W. 2010. Hormonal changes caused by the xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Science50, 215–221.

Mata C I, Fabre B, Parsons H T, Hertog M L, Van Raemdonck G, Baggerman G, Poel B V, Lilley K S, Nicolaï B M. 2018. Ethylene receptors, CTRs and EIN2 target protein identification and quantification through parallel reaction monitoring during tomato fruit ripening. Frontiers in Plant Science9, 1626.

Mou W, Kao Y T, Michard E, Simon A A, Li D, Wudick M M, Lizzio M A, Feijó J A, Chang C. 2020. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communication11, 1–11.

Na G, Mu X, Grabowski P, Schmutz J, Lu C. 2019. Enhancing microRNA 167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativaThe Plant Journal98, 346–358.

Ning Q, Jian Y, Du Y, Li Y, Shen X, Jia H, Zhao R, Zhan J, Yang F, Jackson D, Liu L, Zhang Z. 2021. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communication12, 5832.

Nonhebel H M, Griffin K. 2020. Production and roles of IAA and ABA during development of superior and inferior rice grains. Functional Plant Biology47, 716–726.

Panigrahi R, Kariali E, Panda B B, Lafarge T, Mohapatra P K. 2019. Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. Functional Plant Biology46, 507–523.

Tao J J, Chen H W, Ma B, Zhang W K, Chen S Y, Zhang J S. 2015. Theroleofethyleneinplants under salinity stress. Frontiers in Plant Science6, 1059.

Teng Z, Yu H, Wang G, Meng S, Liu B, Yi Y, Chen Y, Zheng Q, Liu L, Yang J, Duan M, Zhang J, Ye N. 2021. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. The Plant Journal109, 1457–1472.

Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America106, 17588–17593.

Wang F, Cheng F, Zhang G. 2006. The relationship between grain filling and hormone content as affected by genotype and source–sink relation. Plant Growth Regulation49, 1–8.

Wang G, Zhang J. 2020. Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying. Environmental and Experimental Botany178, 104165.

Wang P, Wang Z, Pan Q, Sun X, Chen H, Chen F, Yuan L, Mi G. 2019. Growth of maize on mixed nitrate and ammonium promotes auxin synthesis and biomass accumulation. Journal of Experimental Botany70, 1859–1873.

Wei S, Wang X, Li G, Qin Y, Jiang D, Dong S. 2019. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Frontiers in Plant Science10, 180.

Xu Y, Jian C, Li K, Tian Y, Zhu K, Zhang W, Wang W, Wang Z, Yang J. 2022. High ethylene level. impedes amino acid biosynthesis in rice grains. Journal of Plant Growth Regulation96, 51–65.

Yang X, Zhao X, Dai Z, Ma F, Miao X, Shi Z. 2021. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. Plant Physiology186, 519–533.

Yin C C, Zhao H, Ma B, Chen S Y, Zhang J S. 2017. Diverse roles of ethylene in regulating agronomic traits in rice. Frontiers in Plant Science8, 1676.

Yu N N, Zhang J W, Liu P, Zhao B, Ren B Z. 2020. Integrated agronomic practices management improved grain formation and regulated endogenous hormone balance in summer maize (Zea mays L.). Journal of Integrative Agriculture19, 1768–1776.

Yu T, Li G, Liu P, Dong S, Zhang J, Zhao B. 2017. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains. Plant Physiology and Biochemistry115, 83–96.

Yue J, Hu X, Huang J. 2014. Origin of plant auxin biosynthesis. Trends in Plant Science19, 764–770.

Yue K, Li L, Xie J, Wang L, Liu Y, Anwar S. 2022. Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. Soil and Tillage Research218, 105317.

Zeng J, Ye Z, He X, Zhang G. 2019. Identification of microRNAs and their targets responding to low-potassium stress in two barley genotypes differing in low-K tolerance. Journal of Plant Physiology234, 44–53.

Zhang L, Li X H, Gao Z, Shen S, Liang X G, Zhao X, Lin S, Zhou S L. 2017. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitroJournal of Plant Physiology216, 1–10.

Zhang W, Cao Z, Zhou Q, Chen J, Xu G, Gu J, Liu L, Wang Z, Yang J, Zhang H. 2016. Grain filling characteristics and their relations with endogenous hormones in large- and small-grain mutants of rice. PLoS ONE11, e0165321.

Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. 2019. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics20, 1–16.

Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim J M, To T K, Li W, Zhang X, Yu Q, Dong Z, Chen W Q, Seki M, Zhou J M, Guo H. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America108, 12539–12544.

[1] TIAN Zhong-ling, ZHOU Jia-yan, ZHENG Jing-wu, HAN Shao-jie.

mgr-mir-9 implicates Meloidogyne graminicola infection in rice by targeting the effector MgPDI [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1445-1454.

[2] JI Kai-yuan, WEN Ru-jun, WANG Zheng-zhou, TIAN Qian-qian, ZHANG Wei, ZHANG Yun-hai.

MicroRNA-370-5p inhibits pigmentation and cell proliferation by downregulating mitogen-activated protein kinase kinase kinase 8 expression in sheep melanocytes [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1131-1141.

[3] YAN Xiao-xiao, LIU Xiang-yang, CUI Hong, ZHAO Ming-qin. The roles of microRNAs in regulating root formation and growth in plants[J]. >Journal of Integrative Agriculture, 2022, 21(4): 901-916.
[4] ZOU Zhong, GONG Wen-xiao, HUANG Kun, SUN Xiao-mei, JIN Mei-lin. Regulation of influenza virus infection by microRNAs[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1421-1427.
[5] XU Yuan, ZHANG Ai-ling, ZHANG Zhe, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi. MicroRNA-34c regulates porcine granulosa cell function by targeting forkhead box O3a[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2019-2028.
[6] XU Yuan, ZHANG Ai-ling, XIAO Guang, ZHANG Zhe, CHEN Zan-mou, ZHANG Hao, LI Jia-qi. p53 and NFκB regulate microRNA-34c expression in porcine ovarian granulosa cells[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1816-1824.
[7] CHANG Wei-hua, ZHANG Yong, CHENG Zhang-rui, ZHAO Xing-xu, WANG Juan-hong, MA You-ji, HU Jun-jie, ZHANG Quan-wei. Identification of novel and differentially expressed microRNAs in ovine ovary and testis tissues using solexa sequencing and bioinformatics[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1604-1616.
[8] FAN Shan-shan, LI Qian-nan, GUO Guang-jun, GAO Jian-chang, WANG Xiao-xuan, GUO Yanmei, John C. Snyder, DU Yong-chen. Identification of microRNAs in two species of tomato, Solanum lycopersicum and Solanum habrochaites, by deep sequencing[J]. >Journal of Integrative Agriculture, 2015, 14(1): 42-49.
[9] YANG Ya-lan, LI Yan, LIANG Ru-yi, ZHOU Rong, AO Hong, MU Yu-lian, YANG Shu-lin, LI Kui , TANG Zhong-lin. Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1331-1339.
[10] HAN Ran, YAN Yan, ZHOU Peng , ZHAO Hui-xian. Comparison of Two MicroRNA Quantification Methods for Assaying MicroRNA Expression Profiles in Wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2014, 13(4): 733-740.
[11] LI Jing-sheng, FU Feng-ling, AN Ming, ZHOU Shu-feng, SHE Yue-hui , LI Wan-chen. Differential Expression of MicroRNAs in Response to Drought Stress in Maize[J]. >Journal of Integrative Agriculture, 2013, 12(8): 1414-1422.
[12] YU Jiang-hua, ZHAO Yan-xin, QIN Ya-ting, YUE Bing, ZHENG Yong-lian , XIAO Hai-lin. Discovery of MicroRNAs Associated with the S Type Cytoplasmic Male Sterility in Maize[J]. >Journal of Integrative Agriculture, 2013, 12(2): 229-238.
[13] SHI Dong-qing, ZHANG Yuan, MA Jin-hu, LI Yu-long , XU Jin. Identification of Zinc Deficiency-Responsive MicroRNAs in Brassica juncea Roots by Small RNA Sequencing[J]. >Journal of Integrative Agriculture, 2013, 12(11): 2036-2044.
[14] YU De-bing, JIANG Bao-chun, GONG Jing, DONG Fu-lu, LU Ying-lin, YUE Hui-jie, WANG Zhengchao. Identification of Novel and Differentially ExpressedMicroRNAs in the Ovaries of Laying and Non-Laying Ducks[J]. >Journal of Integrative Agriculture, 2013, 12(1): 136-146.
[15] LIU Yong-xin, CHANG Wei, HAN Ying-peng, ZOU Quan, GUO Mao-zu , LI Wen-bin. In silico Detection of Novel MicroRNAs Genes in Soybean Genome[J]. >Journal of Integrative Agriculture, 2011, 10(9): 1336-1345.
No Suggested Reading articles found!