Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (1): 55-64    DOI: 10.1016/S2095-3119(20)63228-2
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Development and characterization of new allohexaploid resistant to web blotch in peanut
WANG Si-yu1, 2*, LI Li-na2*, FU Liu-yang1, 2*, LIU Hua2, QIN Li2, CUI Cai-hong2, MIAO Li-juan2, ZHANG Zhong-xin2, GAO Wei2, DONG Wen-zhao2, HUANG Bing-yan2, ZHENG Zheng2, TANG Feng-shou2, ZHANG Xin-you1, 2, DU Pei2
School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P.R.China
2 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

花生病害严重威胁花生生产,而通过种间杂交创制抗病材料是解决这一问题的有效途径。本研究利用花生栽培品种四粒红与野生种Arachis duranensis杂交,通过胚拯救和组织培养获得了种间杂种F1幼苗,细胞学和分子标记鉴定表明种间杂种F1为真杂种。进一步对扩繁F1幼苗进行秋水仙素处理,获得了F1种子,命名为Am1210。通过寡核苷酸荧光原位杂交鉴定、分子标记鉴定、表型鉴定和网斑病鉴定,我们发现:1)Am1210是Slh和ZW55种间杂交异源六倍体花生;2)蔓生、单粒或二粒荚果和红色种皮等性状相对于直立型、多粒荚果和褐色种皮为显性性状;3)Am1210的网斑病抗性与Slh相比显著提高,表明这种抗性来自于A. duranensis。此外,本研究还开发了69个显性和共显性分子标记,可用于种间杂种鉴定及未来A. duranensis染色体片段易位或渗入系的鉴定。




Abstract  
Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem.  In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong (Slh) cultivar with Arachis duranensis (ZW55), a diploid wild species.  Seedlings were generated by embryo rescue and tissue culture.  A true interspecific hybrid was then confirmed by cytological methods and molecular markers.  After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210.  With oligonucleotide fluorescence in situ hybridization (Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55; 2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats; 3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis.  In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.
 
Keywords:  peanut      interspecific hybridization        allohexaploid        Oligo FISH        molecular marker        web blotch  
Received: 15 October 2019   Accepted:
Fund: This research was supported by the National Natural Science Foundation of China (31801397), the Henan Province Young Talents Lifting Project, China (2018HYTP003), the Independent Innovation Foundation of Henan Academy of Agricultural Sciences, China (2019ZC13), the earmarked fund for China Agriculture Research System (CARS-13), and the Henan Provincial Agriculture Research System, China (S2012-05).
Corresponding Authors:  Correspondence ZHANG Xin-you, Tel: +86-371-65729560, E-mail: haasz@126.com; DU Pei, Tel: +86-371-61317913, E-mail: dupei2005@163.com.    
About author:  Wang Si-yu, E-mail: 15537323216@163.com; * These authors contributed equally to this study.

Cite this article: 

WANG Si-yu, LI Li-na, FU Liu-yang, LIU Hua, QIN Li, CUI Cai-hong, MIAO Li-juan, ZHANG Zhong-xin, GAO Wei, DONG Wen-zhao, HUANG Bing-yan, ZHENG Zheng, TANG Feng-shou, ZHANG Xin-you, DU Pei . 2021. Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 20(1): 55-64.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438–446.
Church G T, Starr J L, Simpson C E. 2005. A recessive gene for resistance to Meloidogyne arenaria in interspecific Aachis spp. hybrids. Journal of Nematology, 37, 178–184.
Du P, Cui C, Liu H, Fu L Y, Li L N, Dai X D, Qin L, Wang S Y, Han S Y, Xu J, Liu B, Huang B Y, Tang F S, Dong W Z, Qi Z J, Zhang X Y. 2019. Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. Plant Methods, 15, 69.
Du P, Li L N, Liu H, Fu L Y, Qin L, Zhang Z X, Cui C H, Sun Z Q, Han S Y, Xu J, Dai X D, Huang B Y, Dong W Z, Tang F S, Zhuang L F, Han Y H, Qi Z J, Zhang X Y. 2018. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biology, 18, 240.
Du P, Zhang X Y, Li L N, Huang B Y, Yi M L, Dong W Z, Tang F S. 2013. Study on slide preparation methods for high quality chromosomes from root tip cells of Arachis. Journal of Henan Agricultural Sciences, 42, 31–35. (in Chinese)
Dwivedi S L, Pande S, Rao J N, Nigam S N. 2002. Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica, 125, 81–88.
Fu J F, Wang D Z, Zhou R J, Yang F Y, Su W N. 2013. Occurrence and epidemic dynamics of peanut web blotch disease in Liaoning Province. Chinese Journal of Oil Crop Sciences, 35, 80–83. (in Chinese)
Fu L Y. 2017. Analysis of meiotic chromosomes in the interspecific hybrid generation of peanut and its genetic effect. MSc thesis, Zhengzhou University, China. (in Chinese)
Fu L Y, Li L N, Li W J, Du P, Liu H, Qin L, Huang B Y, Dong W Z, Tang F S, Zang X, Zhang X Y. 2016. Cytogenetic analysis of interspecific hybrid between cultivated peanut (Arachis hypogaea L.) and wild species A. macedoi. Chinese Journal of Oil Crop Sciences, 38, 300–306. (in Chinese)
Gregory M P, Gregory W C. 1979. Exotic germ plasm of Arachis L. interspecific hybrids. Journal of Heredity, 70, 185–193.
He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S. 2003. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biology, 3, 1–6.
He L Q, Xiong F Q, Zhong R C, Han Z Q, Li Z, Tang X M, Jiang J, Tang R H, He X H. 2013. Study on genome variations by using SCoT markers during allopolyploidization of the cultivated peanut×A. chacoensis. Scientia Agricultura Sinica, 46, 1555–1563. (in Chinese)
Li L N, Du P, Fu L Y, Liu H, Xu J, Qin L, Yan M, Han S Y, Huang B Y, Dong W Z, Tang F S, Zhang X Y. 2017. Development and characterization of amphidiploid derived from interspecific cross between cultivated peanut and its wild relative Arachis oteroi. Acta Agronomica Sinica, 43, 133–140. (in Chinese)
Li S, Gao M, Wang N, Cui X W, Liu C Y, Wang Z Y. 2018. Different lesion types of peanut web blotch and virulence differences of their pathogens. Acta Phytophylacica Sinica, 44, 150–155. (in Chinese)
Mallikarjuna N, Hoisington D. 2009. Peanut improvement: Production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Security, 1, 457–462.
Mallikarjuna N, Sastri D C. 2002. Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica, 126, 161–167.
Mallikarjuna N, Senthilvel S, Hoisington D. 2011. Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genetic Resources and Crop Evolution, 58, 889–907.
Moretzsohn M C, Leoi L, Proite K, Guimaraes P M, Leal-Bertioli S, Gimenes M A, Martins W S, Valls J F, Grattapaglia D, Bertioli D J. 2005. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 111, 1060–1071.
Nagy E D, Chu Y, Guo Y F, Khanal S, Tang S X, Li Y, Dong W B, Timper P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. 2010. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Molecular Breeding, 26, 357–370.
Pandey M K, Monyo E, Ozias-Akins P, Liang X Q, Guimarães P, Nigam S N, Upadhyaya H D, Janila P, Zhang X Y, Guo B Z, Cook D R, Bertioli D J, Michelmore R, Varshney R K. 2012. Advances in Arachis genomics for peanut improvement. Biotechnology Advances, 30, 639–651.
Pasupuleti J, Ramaiah V, Rathore A, Rupakula A, Reddy R K, Waliyar F, Nigam S N. 2013. Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica, 193, 13–25.
Phipps P M. 1985. Web blotch of peanut in Virginia. Plant Disease, 69, 1097–99.
Robledo G, Lavia G I, Seijo G. 2009. Species relations among wild Arachis species with the A-genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics, 118, 1295–1307.
Seijo J G, Lavia G I, Fernandez A, Krapovickas A, Ducasse D, Moscone E A. 2004. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). American Journal of Botany, 91, 1294–1303.
Sharma H C, Pampapathy G, Dwivedi S L, Reddy L J. 2003. Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. Journal of Economic Entomology, 96, 1886–1897.
Stalker H T. 1981. Hybrids in the genus Arachis between sections erectoides and Arachis. Crop Science, 21, 359–362.
Stalker H T. 2017. Utilizing wild species for peanut improvement. Crop Science, 57, 1102–1120.
Stalker H T, Beute M K, Shew B B, Barker K R. 2002. Registration of two root-knot nematode-resistant peanut germplasm lines. Crop Science, 42, 312–313.
Wang Z Y, Li S J, Zhang X Y, Gao M, Cui X W, Wang N, Sang S L. 2015. A Method for Identification of Resistance to Peanut Web Blotch. China. Patent, Application No. CN105191682A. Patent and Trademark Office, China. (in Chinese)
Xue H Q, Isleib T G, Stalker H T, Payne G A, Obrian G. 2004. Evaluation of Arachis species and interspecific tetraploid lines for resistance to aflatoxin production by Aspergillus flavus. Peanut Science, 31, 134–141.
Zhang X, Xu M L, Wu J X, Dong W B, Chen D X, Wang L, Chi Y C. 2019. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China. Current Microbiology, 76, 200–206.
Zhang X Y, Xu J, Tang F S, Dong W Z, Zang X W, Zhang Z X. 2013. Embryonic development and changes of endogenous hormones in interspecific hybrids between peanut (A. hypogaea L.) and wild Arachis species. Acta Agronomica Sinica, 39, 1127–1133. (in Chinese)
Zhao C Z, Qiu J J, Agarwal G, Wang J S, Ren X Z, Xia H, Guo B Z, Ma C L, Wan S B, Bertioli D J, Varshney R K, Pandey M K, Wang X J. 2017. Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Frontier in Plant Sciences, 8, 1209.
[1] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[2] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[3] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
[4] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
[5] LIU Lei, WANG Heng-bo, LI Yi-han, CHEN Shu-qi, WU Ming-xing, DOU Mei-jie, QI Yi-yin, FANG Jing-ping, ZHANG Ji-sen. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3230-3244.
[6] ZHAO Shi-cheng, LÜ Ji-long, XU Xin-peng, LIN Xiao-mao, Luiz Moro ROSSO, QIU Shao-jun, Ignacio CIAMPITTI, HE Ping . Peanut yield, nutrient uptake and nutrient requirements in different regions of China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2502-2511.
[7] TIAN Da-gang, CHEN Zi-qiang, LIN Yan, CHEN Zai-jie, LUO Jia-mi, JI Ping-sheng, YANG Li-ming, WANG Zong-hua, WANG Feng . Two novel gene-specific markers at the Pik locus facilitate the application of rice blast resistant alleles in breeding[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1554-1562.
[8] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
[9] LIU Yuan, Takele Weldu GEBREWAHID, ZHANG Pei-pei, LI Zai-feng, LIU Da-qun. Identification of leaf rust resistance genes in common wheat varieties from China and foreign countries[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1302-1313.
[10] CHEN Bing-yu, LI Qi-zhai, HU Hui, MENG Shi, Faisal SHAH, WANG Qiang, LIU Hong-zhi . An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2340-2351.
[11] ZHANG Jia-lei, GENG Yun, GUO Feng, LI Xin-guo, WAN Shu-bo. Research progress on the mechanism of improving peanut yield by single-seed precision sowing[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.
[12] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[13] LIANG Xiao-yan, GUO Feng, FENG Ye, ZHANG Jia-lei, YANG Sha, MENG Jing-jing, LI Xin-guo, WAN Shu-bo. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.
[14] ZHANG Guan-chu, DAI Liang-xiang, DING Hong, CI Dun-wei, NING Tang-yuan, YANG Ji-shun, ZHAO Xin-hua, YU Hai-qiu, ZHANG Zhi-meng . Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress[J]. >Journal of Integrative Agriculture, 2020, 19(3): 690-699.
[15] WANG Hai-xia, WANG Ming-lun, WANG Xiu-zhong, DING Yu-long . Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. >Journal of Integrative Agriculture, 2020, 19(3): 700-708.
No Suggested Reading articles found!