Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1944-1957    DOI: 10.1016/j.jia.2023.12.032
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Functional identification of Medicago truncatula MtRAV1 in regulating growth and development

Shumin Wang1, 2*, Tao Guo3*, Shaolin Zhang2, Hong Yang2, Li Li2, Qingchuan Yang1, Junping Quan2#, Ruicai Long1#

1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 Nanshan Botanical Garden Management Office, Chongqing 400065, China

3 Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 401329, China

 Highlights 
Overexpression of MtRAV1 in Medicago truncatula led to dwarfism, delayed flowering, a reduction in leaves and floral organs, enhanced branching, as well as smaller pods and seeds.
MtRAV1 modulated genes related to photosynthesis, circadian rhythm, and auxin signaling pathway.
MtRAV1 repressed genes involved in flowering and hormone biosynthesis, including MtFTa1, MtSOC1, MtGA3OX1, MtDWARF14, and MtCCD7.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
RAV(Related to ABI3/VP1)转录因子属于AP2或B3超家族,是植物特异性转录因子。已有研究表明,RAVs基因参与植物生长发育调控和激素信号转导,但其具体作用机制还不清晰,有待于进一步研究。为研究苜蓿RAVs基因分子调控机制,本研究从蒺藜苜蓿中筛选到3个RAVs基因,对其进行进化分析,将其中一个RAV基因命名为MtRAV1,构建了该基因的过表达载体并转化蒺藜苜蓿,对过表达转基因株系与野生型植株进行了表型比较分析。为进一步筛选MtRAV1基因下游作用基因,使用DAP-seq和RNA-seq方法过表达转基因株系与野生型植株进行测序比较分析。研究结果表明,MtRAV1过表达蒺藜苜蓿与野生型相比表现出植株矮化、开花延迟、叶片和花器官变小、分枝数量增加、果荚和种子变小等性状,基因表达分析结果表明MtRAV1过表达株系中MtFTa1MtSOC1MtGA3OX1MtDWARF14MtCCD7等开花调控和生长调控相关基因的表达受到明显抑制。RNA-seq分析结果表明MtRAV1可能通过影响光合作用、昼夜节律和植物激素(特别是生长素)信号传导途径中相关基因的表达来调控植物的生长发育。DAP-seq与RNA-seq联合分析结果表明MtRAV1抑制光合系统II和生长素信号通路相关基因MtFd-l3MtLhcb-l2MtSAUR-l等的表达,进而抑制植物生长。综上所述,本研究解析了MtRAV1在蒺藜苜蓿生长发育调控过程中的作用机制,预测其主要通过生长素信号传导途径影响植物的生长发育,MtRAV1基因被初步证明为蒺藜苜蓿的一个关键生长抑制因子,该基因为高产早熟苜蓿新品种的选育提供了潜在的候选基因。


Abstract  

Related to ABI3 and VP1 (RAV) transcription factors belong to the AP2 and B3 superfamily.  RAVs genes have been reported to be involved in plant growth and development regulation.  This study screened three RAV genes from Medicago truncatula and named one of them MtRAV1.  The MtRAV1 overexpressing plants exhibits traits such as plant dwarfing, delayed flowering, reduced leaf and floral organs, increased branching, and reduced pods and seeds.  Gene expression analysis results showed that overexpression of MtRAV1 inhibited the expression of Flowering Locus T (MtFTa1), Suppressor of Overexpression of CO 1 (MtSOC1), GA3-oxidase1 (MtGA3OX1), DWARF14 (MtD14) and Carotenoid Cleavage Dioxygenase 7 (MtCCD7).  To further investigate the regulation pathway involved by MtRAV1, RNA-sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analysis were conducted.  RNA-seq results indicated that MtRAV1 might affect plant growth and development by regulating some genes in photosynthesis, circadian rhythm and plant hormone signaling pathways, especially the auxin signaling pathway.  Conjoint analysis of DAP-seq and RNA-seq revealed that MtRAV1 might inhibit the expression of Ferredoxin (MtFd-l3), Light-harvesting Chlorophyll a/b Binding Protein 1 (MtLhcb-l2) and Small Auxin Up-regulated RNA (MtSAUR-l), which related to photosystem II and auxin signaling pathway.  Summarily, MtRAV1 was preliminarily proven to be a key growth inhibitory factor in Mtruncatula.

Keywords:  RAV transcription factor       growth and development        photosynthesis        plant hormone signal transduction  
Received: 16 April 2023   Online: 03 January 2024   Accepted: 28 November 2023
Fund: 
This work was supported by the Key Projects in Science and Technology of Inner Mongolia, China (2021ZD0031), the China Agriculture Research System of MOF and MARA (CARS-34), the Performance Incentive and Guidance Special Project of Scientific Research Institution, Chongqing Science and Technology Committee, China (cstc2022jxjl80019), and the Natural Science Foundation of Chongqing, China (CSTB2022NSCQ-BHX0744).
About author:  Shumin Wang, E-mail: wsmin2011@126.com; Tao Guo, E-mail: yushen0002008@126.com; #Correspondence Ruicai Long, E-mail: dragongodsgod@163.com; Junping Quan, E-mail: 151209328@qq.com * These authors contributed equally to this study.

Cite this article: 

Shumin Wang, Tao Guo, Shaolin Zhang, Hong Yang, Li Li, Qingchuan Yang, Junping Quan, Ruicai Long. 2025. Functional identification of Medicago truncatula MtRAV1 in regulating growth and development. Journal of Integrative Agriculture, 24(5): 1944-1957.

Aguilar-Jaramillo A E, Marin-Gonzalez E, Matias-Hernandez L, Osnato M, Pelaz S, Suarez-Lopez P. 2019. Tempranillo is a direct repressor of the microRNA miR172. The Plant Journal3, 522–535.

Barbier F F, Dun E A, Kerr S C, Chabikwa T G, Beveridge C A. 2019. An update on the signals controlling shoot branching. Trends in Plant Science3, 220–236.

Castillejo C, Pelaz S. 2008. The balance between constans and tempranillo activities determines FT expression to trigger flowering. Current Biology17, 1338–1343.

Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agarwal M, Zhu J K. 2003. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in ArabidopsisGenes Development17, 1043–1054.

Delaux P M, Xie X, Timme R E, Puech-Pages V, Dunand C, Lecompte E, Delwiche C F, Yoneyama K, Becard G, Sejalon-Delmas N. 2012. Origin of strigolactones in the green lineage. New Phytologist4, 857–871.

Dröge-Laser W, Snoek B L, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family - an update. Current Opinion in Plant Biology45, 36–49.

Guilfoyle T J, Ulmasov T, Hagen G. 1998. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cellular and Molecular Life Sciences54, 619–627.

Hanke G, Mulo P. 2013. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environment6, 1071–1084.

Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular Cell4, 576–589.

Hu H M, Tian S, Xie G H, Liu R, Wang N N, Li S S, He Y H, Du J M. 2021. TEM1 combinatorially binds to Flowering locus T and recruits a Polycomb factor to repress the floral transition in ArabidopsisProceedings of the National Academy of Sciences of the United States of America35, e2103895118.

Hu Y X, Wang Y X, Liu X F, Li J Y. 2004. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research1, 8–15.

Jin S, Nasim Z, Susila H, Ahn J H. 2021. Evolution and functional diversification of Flowering locus T/Terminal flower 1 family genes in plants. Seminars in Cell and Developmental Biology109, 20–30.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 4, 357–360.

Kim E Y, Choi Y H, Lee J I, Kim I H, Nam T J. 2015. Antioxidant activity of oxygen evolving enhancer protein 1 purified from Capsosiphon fulvescensJournal of Food Science6, H1412-H1417.

Korasick D A, Westfall C S, Lee S G, Nanao M H, Dumas R, Hagen G, Guilfoyle T J, Jez J M, Strader L C. 2014. Molecular basis for auxin response factor protein interaction and the control of auxin response repression. Proceedings of the National Academy of the United States of America14, 5427–5432.

Kumar G M, Mamidala P, Podile A R. 2009. Regulation of polygalacturonase-inhibitory proteins in plants is highly dependent on stress and light responsive elements. Plant Omics2, 238–249.

Labate M T, Ko K, Ko Z W, Pinto L S, Real M J, Romano M R, Barja P R, Granell A, Friso G, van Wijk K J, Brugnoli E, Labate C A. 2004. Constitutive expression of pea Lhcb 1–2 in tobacco affects plant development, morphology and photosynthetic capacity. Plant Molecular Biology5, 701–714.

Lauressergues D, André O, Peng J, Wen J, Chen R, Ratet P, Tadege M, Mysore K S, Rochange S F. 2015. Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. Journal of Experimental Botany5, 1237–1244.

Li Z G, Chen H W, Li Q T, Tao J J, Bian X H, Ma B, Zhang W K, Chen S Y, Zhang J S. 2015. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in ArabidopsisScientific Reports5, 12477.

Liu H, Frankel L K, Bricker T M. 2009. Characterization and complementation of a psbR mutant in Arabidopsis thalianaArchives of Biochemistry and Biophysics489, 34–40.

Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester H J, Cardinale F. 2013. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicusJournal of Experimental Botany7, 1967–1981.

Lu Q Y, Zhao L, Li D M, Hao D Q, Zhan Y, Li W B. 2014. A GmRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean. PLoS ONE2, e89145.

Lymperopoulos P, Msanne J, Rabara R. 2018. Phytochrome and Phytohormones: Working in tandem for plant growth and development. Frontiers in Plant Science9, 1037.

Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T. 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. The Plant Journal45, 804–818.

Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G. 2005. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in ArabidopsisPlant Cell8, 2255–2270.

Moreno-Cortes A, Hernandez-Verdeja T, Sanchez-Jimenez P, Gonzalez-Melendi P, Aragoncillo C, Allona I. 2012. CsRAV1 induces sylleptic branching in hybrid poplar. New Phytologist1, 83–90.

Nakamura H, Xue Y L, Miyakawa T, Hou F, Qin H M, Fukui K, Shi X, Ito E, Ito S, Park S H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nature Communications4, 2613.

Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Shinozaki K. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal, 2, 137–148.

Okushima Y, Mitina I, Quach H L, Theologis A. 2005. Auxin response factor 2 (ARF2): A pleiotropic developmental regulator. The Plant Journal1, 29–46.

Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. 2012. Tempranillo genes link photoperiod and gibberellin pathways to control flowering in ArabidopsisNature Communications3, 808.

Osnato M, Matias-Hernandez L, Aguilar-Jaramillo A E, Kater M M, Pelaz S. 2020. Genes of the RAV family control heading date and carpel development in rice. Plant Physiology4, 1663–1680.

Pietrzykowska M, Suorsa M, Semchonok D A, Tikkanen M, Boekema E J, Aro E M, Jansson S. 2014. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in ArabidopsisPlant Cell9, 3646–3660.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols6, 1101–1108.

Qiu T, Qi M, Ding X H, Zheng Y Y, Zhou T J, Chen Y, Han N, Zhu M Y, Bian H W, Wang J H. 2020. The SAUR41 subfamily of small auxin up RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Annals of Botany125, 805–819.

Shin H Y, Nam K H. 2018. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in ArabidopsisMolecular and Cells12, 1072–1080.

Spartz A K, Lor V S, Ren H, Olszewski N E, Miller N D, Wu G, Spalding E P, Gray W M. 2017. Constitutive expression of Arabidopsis Small auxin up RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation. Plant Physiology2, 1453–1462.

Stenbaek A, Jensen P E. 2010. Redox regulation of chlorophyll biosynthesis. Phytochemistry71, 853–859.

Stigliani A, Martin-Arevalillo R, Lucas J, Bessy A, Vinos-Poyo T, Mironova V, Vernoux T, Dumas R, Parcy F. 2019. Capturing auxin response factors syntax using DNA binding models. Molecular Plant6, 822–832.

Stortenbeker N, Bemer M. 2019. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. Journal of Experimental Botany1, 17–27.

Sugishima M, Kitamori Y, Noguchi M, Kohchi T, Fukuyama K. 2009. Crystal structure of red chlorophyll catabolite reductase: Enlargement of the ferredoxin-dependent bilin reductase family. Journal of Molecular Biology2, 376–387.

Tiwari S B, Wang X J, Hagen G, Guilfoyle T J. 2001. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell12, 2809–2822.

Wang S M, Guo T, Shen Y X, Wang Z, Kang J M, Zhang J J, Yi F Y, Yang Q C, Long R C. 2021. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatulaPlant Physiology and Biochemistry163, 154–165.

Wang S M, Guo T, Wang Z, Kang J M, Yang Q C, Shen Y X, Long R C. 2020. Expression of three related to ABI3/VP1 genes in Medicago truncatula caused increased stress resistance and branch increase in Arabidopsis thalianaFrontiers in Plant Science11, 611.

Wu V W, Thieme N, Huberman L B, Dietschmann A, Kowbel D J, Lee J, Calhoun S, Singan V R, Lipzen A, Xiong Y, Monti R, Blow M J, O’Malley R C, Grigoriev I V, Benz J P, Glass N L. 2020. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proceedings of the National Academy of Sciences of the United States of America117, 6003–6013.

Xu Y X, Xiao M Z, Liu Y, Fu J L, He Y, Jiang D A. 2017. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Molecular Biology94, 97–107.

Yang Y, Chi Y J, Wang Z, Zhou Y, Fan B F, Chen Z X. 2016. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany67, 4727–4742.

Zhang K X, Zhao L, Yang X, Li M M, Sun J Z, Wang K, Li Y H, Zheng Y H, Yao Y H, Li W B. 2019. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiologia Plantarum4, 814–829.

Zhang X J, He L L, Zhao B L, Zhou S L, Li Y H, He H, Bai Q Z, Zhao W Y, Guo S Q, Liu Y, Chen J H. 2020. Dwarf and increased branching 1 controls plant height and axillary bud outgrowth in Medicago truncatulaJournal of Experimental Botany20, 6355–6365.

Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137.

Zhao L, Luo Q L, Yang C L, Han Y P, Li W B. 2008. A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta6, 1389–1399.

Zhao L, Yang X, Du H L, Li M M, Ding F Q, Lv Q X, Wang C, Wang P P, Zhang K X, Nie T K, Li W B. 2016. Reduced GA biosynthesis in GmRAV-transgenic tobacco causes the dwarf phenotype. Russian Journal of Plant Physiology, 63, 690–694.

Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, et al. 2013. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature504, 406–410.

[1] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[2] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[3] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
No Suggested Reading articles found!