Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 52-62    DOI: 10.1016/j.jia.2022.08.094
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background

XU Shi-rui1*, JIANG Bo2*, HAN Hai-ming1, JI Xia-jie1, ZHANG Jin-peng1, ZHOU Sheng-hui1, YANG Xin-ming1, LI Xiu-quan1, LI Li-hui1, LIU Wei-hua1

1 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  小麦野生近缘植物冰草中蕴含许多对小麦遗传改良有利的基因。小麦-冰草2P异源易位系携带有小旗叶、小穗排列紧密、株型紧凑等特异性状。本文对携带有小麦-冰草不同2P易位片段的易位系及易位系回交群体进行农艺性状调查和遗传分析,结果表明,易位系2PT-3(2PL)易位片段具有促使旗叶长度变小的作用,易位系2PT-3(2PL)、2PT-5(2PL(0.6-1))易位片段具有促使旗叶宽度变小的作用。易位系2PT-13(2PS(0.18–0.36))易位片段具有增加旗叶的长度和面积的作用。易位系2PT-3(2PL)、2PT-8(2PL(0.86-1))易位片段具有促使小穗密度变大的作用。易位系2PT-7(2PL(0.0-0.09))、2PT-8(2PL(0.86-1))、2PT-10(2PS)、2PT-13(2PS(0.18-0.36))易位片段具有降低株高的作用。本研究可为小麦-冰草易位系的有效利用提供科学依据。

Abstract  

Agropyron cristatum (2n=4x=28, PPPP) is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.  Wheat–Acristatum 2P alien translocation lines exhibit many desirable traits, such as small flag leaves, a high spikelet number and density, and a compact plant type.  An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.  The results showed that a translocation fragment from 2PT-3 (2PL) reduced the length of the flag leaves, while translocation fragments from 2PT-3 (2PL) and 2PT-5 (2PL (0.60–1.00)) reduced the width of the flag leaves.  A translocation fragment from 2PT-13 (2PS (0.18–0.36)) increased the length and area of the flag leaves.  Translocation fragments from 2PT-3 (2PL) and 2PT-8 (2PL (0.86–1.00)) increased the density of spikelets.  Translocation fragments from 2PT-7 (2PL (0.00–0.09)), 2PT-8 (2PL (0.86–1.00)), 2PT-10 (2PS), and 2PT-13 (2PS (0.18–0.36)) reduced plant height.  This study provides a scientific basis for the effective utilization of wheat–Acristatum translocation lines.

Keywords:  wheat-A. cristatum 2P chromosome translocation lines        flag leaf        spikelet density        genetic effects  
Received: 06 July 2021   Accepted: 28 September 2021
Fund: This research was supported by grants from the National Natural Science Foundation of China (32272083) and the National Key Research and Development Program of China (2016YFD0100102).
Corresponding Authors:  Correspondence LIU Wei-hua, Tel: +86-10-62176077, Fax: +86-10-62189650, E-mail: liuweihua@caas.cn    
About author:  Received 6 July, 2021 Accepted 28 September, 2021 XU Shi-rui, E-mail: xushirui1105@163.com; JIANG Bo, E-mail: jiangbo19880229@163.com; Correspondence LIU Wei-hua, Tel: +86-10-62176077, Fax: +86-10-62189650, E-mail: liuweihua@caas.cn * These authors contributed equally to this study.

Cite this article: 

XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua. 2023. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background. Journal of Integrative Agriculture, 22(1): 52-62.

Cao P, Liang X N, Zhao H, Feng B, Xu E J, Wang L M, Hu Y X. 2019. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta, 250, 1967–1981.
Dewey D R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson J P, ed., Gene Manipulation in Plant Improvement. Stadler Genetics Symposia Series. Springer, Plenum Press, Boston, MA, New York. pp. 209–279.
Ding P Y, Mo Z Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G D, Chen G Y, Wang J R, Li W, Qi P F, Jiang Y F, Kang H Y, Yan G J, Wei Y M, Zheng Y L, Lan X J, Ma J. 2022. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. Journal of Integrative Agriculture, 21, 1551–1562.
Dong Y S, Zhou R H, XU S J, LI L H, Cauderon Y, Wang R R. 1992. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas, 116, 175–178.
Duwayri M. 1984. Effect of flag leaf and awn removal on grain yield and yield components of wheat grown under dryland conditions. Field Crops Research, 8, 307–313.
Gill K S, Lubbers E L, Gill B S, Raupp W J, Cox T S. 1991. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 34, 362–374.
Han F, Lamb J C, Birchler J A. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America, 103, 3238–3243.
Khaliq I, Irshad A, Ahsan M. 2008. Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.). Cereal Research Communications, 36, 65–76.
Jiang B, Liu T G, Li H H, Han H M, Li L H, Zhang J P, Yang X M, Zhou S H, Li X Q, Liu W H. 2018. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum Chromosome 2P. Frontiers in Plant Science, 9, 817.
Jin J J, Liu D, Qi Y Z, Ma J, Zhen W C. 2020. Major QTL for seven yield-related traits in common wheat (Triticum aestivum L.). Frontiers in Genetics, 11, 1012.
Kang H Y, Wang Y, Fedak G, Cao W G, Zhang H Q, Fan X, Sha L, Xu L L, Zheng Y L, Zhou Y H. 2011. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS ONE, 6, e21802.
Kang H Y, Zhang Z J, Xu L L, Qi W L, Tang Y, Wang H, Zhu W, Li D Y, Zeng J, Wang Y, Fan X, Sha L N, Zhang H Q, Zhou Y H. 2016. Characterization of wheat–Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome, 59, 221–229.
Li G P, Chen P D, Zhang S Z, Wang X E, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. 2007. Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 155, 305–313.
Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. 2017. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theoretical and Applied Genelics, 130, 109–121.
Li H H, Lv M J, Song L Q, Zhang J P, Gao A O, Li L H, Liu W H. 2016. Production and identification of wheat–Agropyron cristatum 2P translocation lines. PLoS ONE, 11, e0145928.
Li L H, Li X Q, Yang X M. 2006. Descriptors and Data Standard for Wheat (Triticum aestivum L.). 1st ed. China Agricultural Press, China. pp. 12–22. (in Chinese)
Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. 2018. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genelics, 131, 839–849. 
Liu Y X, Tao Y, Wang Z Q, Guo Q L, Wu F K, Yang X L, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L. 2018. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Molecular Breeding, 38, 1–11.
Lu M J, Lu Y Q, Li H H, Pan C L, Guo Y, Zhang J P, Yang X M, Li X Q, Liu W H, Li L H. 2016. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE, 11, e0159577.
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, et al. 2020. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genelics, 133, 297–315.
Petersen S, Lyerly J H, Worthington M L, Parks W R, Cowger C, M arshall D S, Guedira G B, Murphy J P. 2015. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genelics, 128, 303–312.
Qi W L, Tang Y, Zhu W, Li D Y, Diao C D, Xu L L, Zeng J, Wang Y, Fan X, Sha L N, Zhang H Q, Zeng Y H, Zhou Y H, Kang H Y. 2016. Molecular cytogenetic characterization of a new wheat–rye 1BL·1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta, 244, 405–416.
Ren T H, Tang Z X, Fu S L, Yan B J, Tan F Q, Ren Z L, Li Z. 2017. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Frontiers in Plant Science, 8, 799.
Song L Q, Jiang L L, Han H M, Gao A O, Yang X M, Li L H, Liu W H. 2013. Efficient induction of wheat-agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE, 8, e69501.
Tanaka H, Nabeuchi C, Kurogaki M, Garg M, Saito M, Ishikawa G, Nakamura T, Tsujimoto H. 2017. A novel compensating wheat–Thinopyrum elongatum Robertsonian translocation line with a positive effect on flour quality. Breeding Science, 67, 509–517.
Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.
Trethowan R M, Mujeeb-Kazi A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science, 48, 1255–1265.
Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhao X J, Zhang D, Ouyang S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Liu Z Y. 2016. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 208, 337–351.
Yang D L, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Li M F. 2016. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genetics, 17, 94–94.
Zhang J, Ma H H, Zhang J P, Zhou S H, Han H M, Liu W H, Li X Q, Yang X M, Li L H. 2018. Molecular cytogenetic characterization of an Agropyron cristatum 6PL chromosome segment conferring superior kernel traits in wheat. Euphytica, 214, 198.
Zhang J P, Liu W H, Han H M, Song L Q, Bai L, Gao Z H, Zhang Y, Yang X M, Li X Q, Gao A N, Li L H. 2015. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics, 106, 129–136. 
Zhang R Q, Hou F, Feng Y G, Zhang W, Zhang M Y, Chen P D. 2015. Characterization of a Triticum aestivum–Dasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits. Theoretical and Applied Genelics, 128, 2415–2425.
Zhang Z, Song L Q, Han H M, Zhou S H, Zhang J P, Yang X M, Li X Q, Liu W H, Li L H. 2017. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. International Journal of Molecular Sciences, 18, 2403.
Zhou S H, Yan B Q, Li F, Zhang J P, Zhang J, Ma H H, Liu W H, Lu Y Q, Yang X M, Li X Q, Liu X, Li L H. 2017. RNA-Seq analysis provides the first insights into the phylogenetic relationship and interspecific variation between Agropyron cristatum and wheat. Frontiers in Plant Science, 8, 1644.

[1] LIU Xue-jing, YIN Bao-zhong, HU Zhao-hui, BAO Xiao-yuan, WANG Yan-dong, ZHEN Wen-chao. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2343-2359.
No Suggested Reading articles found!