Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2686-2702    DOI: 10.1016/j.jia.2023.06.028
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae
Wajjiha Batool1, 2, Justice Norvienyeku2, 3, Wei Yi1, Zonghua Wang2, Shihong Zhang1#, Lili Lin2#
1 Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
2 Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Hainan University, Haikou 570288, China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

稻瘟病是由半活体营养子囊真菌稻瘟病菌(Magnaporthe oryzae)引起的病害,对全球水稻的可持续生产构成重大威胁。研究表明,为了成功侵染,稻瘟病菌会向水稻细胞分泌大量功能多样的蛋白质以利其致病。然而,这些效应蛋白进入宿主细胞后靶向何处及其如何促进病原致病的机制仍不清。我们研究发现稻瘟病菌一假定非典型分泌蛋白MoMtp调控稻瘟病菌分生孢子产生和附着胞的形成MoMTP基因敲除突变体在侵染水稻叶片时引起水稻超敏反应,表明MoMtp对稻瘟病菌的毒至关重要细胞壁完整性和氧化胁迫实验结果表明MoMtp可能真菌维持细胞结构完整性必须MoMTP基因在侵染的所有阶段均上调表达,表明其可能在稻瘟病菌对宿主入侵和定殖过程中起调节作用。此外,通过烟草瞬时表达以及水稻叶鞘侵染实验发现,MoMtp-GFP定位于烟草及水稻细胞的线粒体中。综上所述,我们MoMtp蛋白可促进稻瘟病菌分正常的分生孢子的形成和病,并可能在侵入过程中干扰水稻线粒体的正常功能。



Abstract  
Blast disease, caused by the hemibiotrophic ascomycete fungus, Magnaporthe oryzae, is a significant threat to sustainable rice production worldwide.  Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.  However, the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.  Here, we reported that a putative mitochondrial targeting non-classically secreted protein (MoMtp) positively regulates conidiogenesis and appressorium maturation in Moryzae.  Moreover, MoMTP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of Moryzae.  In addition, cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.  Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection, indicating its possible regulatory role in host invasion and the infectious development of M. oryzae.  Furthermore, Agrobacterium infiltration and sheath inoculation confirmed that MoMtp-GFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.  Taken together, we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of Moryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.
Keywords:  plant-pathogen interactions        effectors        hypersensitive response        pathogenesis        mitochondria  
Received: 23 February 2023   Accepted: 31 May 2023
Fund: 

This project is funded by the National Natural Science Foundation of China (32172364 to Shihong Zhang and 32272513 to Zonghua Wang) and Fujian Agriculture and Forestry University scholarship, China for Wajjiha Batool.

About author:  Wajjiha Batool, E-mail: wajjiha@syau.edu.cn; #Correspondence Lili Lin, E-mail: lili_lin@fafu.edu.cn; Shihong Zhang, E-mail: zhangsh89@syau.edu.cn

Cite this article: 

Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. 2024. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae. Journal of Integrative Agriculture, 23(8): 2686-2702.

Aliyu S R, Lin L, Chen X, Abdul W, Lin Y, Otieno F J, Shabbir A, Batool W, Zhang Y, Tang W. 2019. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzaeFungal Genetics and Biology127, 23–34.

Andac A, Ozketen A C, Dagvadorj B, Akkaya M S. 2020. An effector of Puccinia striiformis f. sp. tritici targets chloroplasts with a novel and robust targeting signal. European Journal of Plant Pathology157, 751–765.

Anderson P K, Cunningham A A, Patel N G, Morales F J, Epstein P R, Daszak P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.

Anderson R G, Casady M S, Fee R A, Vaughan M M, Deb D, Fedkenheuer K, Huffaker A, Schmelz E A, Tyler B M, McDowell J M. 2012. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. The Plant Journal72, 882–893.

Batool W, Liu C, Fan X, Zhang P, Hu Y, Wei Y, Zhang S H. 2022. AGC/AKT Protein kinase SCH9 is critical to pathogenic development and overwintering survival in Magnaporthe oryzaeJournal of Fungi8, 810–829.

Batool W, Shabbir A, Lin L, Chen X, An Q, He X, Pan S, Chen S, Chen Q, Wang Z. 2021. Translation initiation factor eIF4E positively modulates conidiogenesis, appressorium formation, host invasion and stress homeostasis in the filamentous fungi Magnaporthe oryzaeFrontiers in Plant Science12, 1170–1184.

Bendtsen J D, Jensen L J, Blom N, Von Heijne G, Brunak S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering Design and Selection17, 349–356.

Bendtsen J D, Kiemer L, Fausboll A, Brunak S. 2005. Non-classical protein secretion in bacteria. BMC Microbiology5, 1–13.

Bendtsen J D, Wooldridge K G. 2009. Non-classical secretion. Bacterial Secreted Proteins (Secretory Mechanisms and Role in Pathogenesis), 10, 224–235.

Betts M F. 2007. Identification of new pathogenicity genes in Magnaporthe oryzae through the construction of an Agrobacterium tumefacines-mediated insertion mutant library. Ph D thesis, The University of Arizona, USA. pp. 1–24.

Blümke A, Falter C, Herrfurth C, Sode B, Bode R, Schafer W, Feussner I, Voigt C A. 2014. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiology165, 346–358.

Caillaud M C, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones J D G. 2016. Correction: A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biology14, e1002408.

Catlett N L, Lee B N, Yoder O C, Turgeon B G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports50, 9–11.

Chen T, Liu R, Dou M, Li M, Li M, Yin X, Liu G, Wang Y, Xu Y. 2020. Insight into function and subcellular localization of plasmopara viticola putative RxLR effectors. Frontiers in Microbiology11, 692–705.

Cheng Y, Wu K, Yao J, Li S, Wang X, Huang L, Kang Z. 2017. PST ha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environmental Microbiology19, 1717–1729.

Deatherage B L, Cookson B T. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infection and Immunity80, 1948–1957.

Deslandes L, Rivas S. 2012. Catch me if you can: Bacterial effectors and plant targets. Trends in Plant Science17, 644–655.

Doehlemann G, Van Der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathogen5, e1000290.

Dong S, Yin W, Kong G, Yang X, Qutob D, Chen Q, Kale S D, Sui Y, Zhang Z, Dou D. 2011. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathogen7, e1002353.

Dou X, Wang Q, Qi Z, Song W, Wang W, Guo M, Zhang H, Zhang Z, Wang P, Zheng X. 2011. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzaePLoS ONE6, e16439.

Doyle E A, Lane A M, Sides J M, Mudgett M B, Monroe J D. 2007. An α-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress, PlantCell & Environment30, 388–398.

Du J, Wang Q, Zeng C, Zhou C, Wang X. 2022. A prophage-encoded non-classical secretory protein of “Candidatus Liberibacter asiaticus induces a strong immune response in Nicotiana benthamiana and citrus. Molecular Plant Pathology23, 1022–1034.

Du P, Zhang C, Zou X, Zhu Z, Yan H, Wuriyanghan H, Li W, Jain M, Munoz-Bodnar A, Zhang S, Gabriel D W. 2021. A secreted ‘Candidatus Liberibacter asiaticus’ peroxiredoxin simultaneously suppresses both localized and systemic innate immune responses in planta. Molecular Plant–Microbe Interactions31, 1312–1322.

Ebner P, Luqman A, Reichert S, Hauf K, Popella P, Forchhammer K, Otto M, Gotz F. 2017. Non-classical protein excretion is boosted by PSMα-induced cell leakage. Cell Reports20, 1278–1286.

Fan J, Du N, Li L, Li G B, Wang Y Q, Zhou Y F, Hu X H, Liu J, Zhao J Q, Li Y. 2019. A core effector UV_1261 promotes Ustilaginoidea virens infection via spatiotemporally suppressing plant defense. Phytopathology Research1, 1–12.

Fang A, Gao H, Zhang N, Zheng X, Qiu S, Li Y, Zhou S, Cui F, Sun W. 2019. A novel effector gene SCRE2 contributes to full virulence of Ustilaginoidea virens to rice. Frontiers in Microbiology10, 845–860.

Fang E G, Dean R A. 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe griseaMolecular Plant–Microbe Interactions13, 1214–1227.

Feizi A, Gatto F, Uhlen M, Nielsen J. 2017. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match the processing demands of the secretome. NPJ Systems Biology and Applications3, 1–9.

Fernandez J, Orth K. 2018. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology26, 582–597.

Gerlach R, Demel G, Konig H G, Gross U, Prehn J H M, Raabe A, Seifert V, Kogel D. 2006. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience141, 1697–1701.

Giraldo M C, Valent B. 2013. Filamentous plant pathogen effectors in action. Nature Reviews Microbiology11, 800–814.

Goldstein A H, Mayfield S P, Danon A, Tibbot B K. 1989. Phosphate starvation inducible metabolism in Lycopersicon esculentum: III. Changes in protein secretion under nutrient stress. Plant Physiology91, 175–182.

Gotz F, Yu W, Dube L, Prax M, Ebner P. 2015. Excretion of cytosolic proteins (ECP) in bacteria. International Journal of Medical Microbiology305, 230–237.

Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R. 2010. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzaeMolecular Plant–Microbe Interactions23, 1053–1068.

Han J, Wang X, Wang F, Zhao Z, Li G, Zhu X, Su J, Chen L. 2021. The fungal effector Avr-Pita suppresses innate immunity by increasing COX activity in rice mitochondria. Rice14, 1–11.

Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogen8, e1002684.

Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T. 2014. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nature Communications5, 1–11.

Jain M, Munoz-Bodnar A, Zhang S, Gabriel D W. 2018. A secreted ‘Candidatus Liberibacter asiaticus peroxiredoxin simultaneously suppresses both localized and systemic innate immune responses in planta. Molecular Plant–Microbe Interactions31, 1312–1322.

Johnson J D, Fleshner M. 2006. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. Journal of Leukocyte Biology79, 425–434.

Keneni G, Bekele E, Imtiaz M, Dagne K. 2012. Genetic vulnerability of modern crop cultivars: Causes, mechanism, and remedies. International Journal of Plant Research2, 69–79.

Khan M, Seto D, Subramaniam R, Desveaux D. 2018. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. The Plant Journal93, 651–663.

Khang C H, Berruyer R, Giraldo M C, Kankanala P, Park S Y, Czymmek K, Kang S, Valent B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. The Plant Cell22, 1388–1403.

Kim S, Kim C Y, Park S Y, Kim K T, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J. 2020. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications11, 1–11.

Kong L A, Li G T, Liu Y, Liu M G, Zhang S J, Yang J, Zhou X Y, Peng Y L, Xu J R. 2013. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzaeFungal Genetics and Biology56, 33–41.

Kvitko B H, Park D H, Velásquez A C, Wei C F, Russell A B, Martin G B, Schneider D J, Collmer A. 2009. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathogen, 5, e1000388.

Lesage G, Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiaeMicrobiology and Molecular Biology Reviews70, 317–343.

Lin L, Cao J, Du A, An Q, Chen X, Yuan S, Batool W, Shabbir A, Zhang D, Wang Z. 2021. eIF3k domain-containing protein regulates conidiogenesis, appressorium turgor, virulence, stress tolerance, and physiological and pathogenic development of Magnaporthe oryzaeFrontiers in Plant Science12, 748120.

Lin L, Chen X, Shabbir A, Chen S, Chen X, Wang Z, Norvienyeku J. 2019. A putative N-BAR-domain protein is crucially required for the development of hyphae tip appressorium-like structure and its plant infection in Magnaporthe oryzaePhytopathology Research1, 1–15.

Liu Y, Lan X, Song S, Yin L, Dry I B, Qu J, Xiang J, Lu J. 2018. In planta functional analysis and subcellular localization of the oomycete pathogen Plasmopara viticola candidate RXLR effector repertoire. Frontiers in Plant Science9, 286–300.

Malavazi I, Goldman G H, Brown N A. 2014. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Briefings in Functional Genomics13, 456–470.

Malhotra J D, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe S W, Kaufman R J. 2008. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proceedings of the National Academy of Sciences of the United States of America105, 18525–18530.

Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma B P, Talbot N J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell24, 322–335.

Mustafa Z, Olmez F, Akkaya M. 2022. Inactivation of a candidate effector gene of Zymoseptoria tritici affects its sporulation. Molecular Biology Reports49, 11563–11571.

Nickel W. 2003. The mystery of non-classical protein secretion: A current view on cargo proteins and potential export routes. European Journal of Biochemistry270, 2109–2119.

Nickel W, Rabouille C. 2018. Unconventional protein secretion: Diversity and consensus. Seminars in Cell and Developmental Biology83, 1–2.

Nie H, Zhang L, Zhuang H, Yang X, Qiu D, Zeng H. 2019. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Applied Microbiology and Biotechnology103, 6153–6167.

Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. The Plant Cell24, 4748–4762.

Rabouille C. 2017. Pathways of unconventional protein secretion. Trends in Cell Biology27, 230–240.

Robin G P, Kleemann J, Neumann U, Cabre L, Dallery J F, Lapalu N, O’Connell R. 2018. Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, Golgi bodies, and microtubules. Frontiers in Plant Science9, 562–579.

Saklani B K, Arora K, Asthana R K, Sharma T R. 2019. In vitro expression, characterisation, and subcellular localisation of AvrPi54 protein, an effector of rice blast fungus Magnaporthe oryzaePreprint.org, 1, doi: 10.20944/preprints201906.0031.v1.

Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

Sambrook J, Fritsch E F, Maniatis T. 1990. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

Sánchez-León E, Verdin J, Freitag M, Roberson R W, Bartnicki-Garcia S, Riquelme M. 2011. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkorper and developing septa in hyphae of Neurospora crassa: Actin dependence and evidence of distinct microvesicle populations. Eukaryotic Cell10, 683–695.

Schroeder L, Ikui A E. 2019. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiaePLoS ONE14, e0199484.

Shabbir A, Batool W, Yu D, Lin L, An Q, Xiaomin C, Guo H, Yuan S, Malota S, Wang Z. 2022. Magnaporthe oryzae chloroplast targeting Endo-β-1,4-Xylanase I MoXYL1A regulates conidiation, appressorium maturation and virulence of the rice blast fungus. Rice15, 1–16.

Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn R A, Kamoun S. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America106, 1654–1659.

Sperschneider J, Catanzariti A M, DeBoer K, Petre B, Gardiner D M, Singh K B, Dodds P N, Taylor J M. 2017. LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports7, 1–14.

Sperschneider J, Dodds P N, Gardiner D M, Manners J M, Singh K B, Taylor J M. 2015. Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathogen11, e1004806.

Speth E B, Lee Y N, He S Y. 2007. Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology10, 580–586.

Timón-Gómez A, Nyvltova E, Abriata L A, Vila A J, Hosler J, Barrientos A. 2018. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Seminars in Cell & Developmental Biology76, 163–178.

Tjalsma H, Antelmann H, Jongbloed J D H, Braun P G, Darmon E, Dorenbos R, Dubois J Y F, Westers H, Zanen G, Quax W J. 2004. Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiology and Molecular Biology Reviews68, 207–233.

Tseng T T, Tyler B M, Setubal J C. 2009. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiology9, 1–9.

Valent B, Khang C H. 2010. Recent advances in rice blast effector research. Current Opinion in Plant Biology13, 434–441.

Voigt B, Schweder T, Sibbald M J J, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer K, Gottschalk G, van Dijl J M. 2006. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics6, 268–281.

Wang G, Xia Y, Song X, Ai L. 2016. Common non-classically secreted bacterial proteins with experimental evidence. Current Microbiology72, 102–111.

Wang Q, Han C, Ferreira A O, Yu X, Ye W, Tripathy S, Kale S D, Gu B, Sheng Y, Sui Y. 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. The Plant Cell23, 2064–2086.

Wang Y, Pang J, Zheng Y, Jiang P, Gong W, Chen X, Chen D. 2017. Genetic manipulation of the bifunctional gene, carRA, to enhance lycopene content in Blakeslea trisporaBiochemical Engineering Journal119, 27–33.

Wilson R A, Talbot N J. 2009. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzaeNature Reviews Microbiology7, 185–195.

De Wit P J, Mehrabi R, Van Den Burg H A, Stergiopoulos I. 2009. Fungal effector proteins: Past, present, and future: Review. Molecular Plant Pathology10, 735–747.

Wyatt T T, Wosten H A, Dijksterhuis J. 2013. Fungal spores for dispersion in space and time. Advances in Applied Microbiology85, 43–91.

Xiao W, Loscalzo J. 2020. Metabolic responses to reductive stress. Antioxidants & Redox Signaling32, 1330–1347.

Xie F, Hardy B. 2009. Accelerating Hybrid Rice Development. International Rice Research Institute, Metro Manila, Philippines.

Xu G, Zhong X, Shi Y, Liu Z, Jiang N, Liu J, Ding B, Li Z, Kang H, Ning Y. 2020. A fungal effector targets a heat shock–dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity. Science Advances, 6, eabb7719.

Yan W, Wang Y. 2018. Trick or treat: Microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection. Molecular Plant-Microbe Interactions31, 6–12.

Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Scientific Reports7, 1–12.

Zhang H, Limphong P, Pieper J, Liu Q, Rodesch C K, Christians E, Benjamin I J. 2012. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. The FASEB Journal26, 1442–1451.

Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X. 2002. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochemical and Biophysical Research Communications297, 1033–1042.

Zhang L, Lv R, Dou X, Qi Z, Hua C, Zhang H, Wang Z, Zheng X, Zhang Z. 2011. The function of MoGlk1 in integration of glucose and ammonium utilization in Magnaporthe oryzaePLoS ONE6, e22809.

Zhang N, Yang J, Fang A, Wang J, Li D, Li Y, Wang S, Cui F, Yu J, Liu Y. 2020. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. Molecular Plant Pathology21, 445–459.

Zhang S, Xu J R. 2014. Effectors and effector delivery in Magnaporthe oryzaePLoS Pathogens10, e1003826.

Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor I A, Yang J, Liu J, Peng Y. 2018. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. The Plant Journal96, 133–146.

Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X. 2014. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications5, 1–12.

Zhao L, Chen J, Sun J, Zhang D. 2017. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilisScientific Reports7, 1–18.

Zhou W, Parent L J, Wills J W, Resh M D. 1994. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. Journal of Virology68, 2556–2569.

[1] ZOU Zhong, GONG Wen-xiao, HUANG Kun, SUN Xiao-mei, JIN Mei-lin. Regulation of influenza virus infection by microRNAs[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1421-1427.
[2] ZHOU ying, ZHANG Min-hong, FENG Jing-hai, DIAO Hua-jie. Effect of relative humidity at chronic temperature on growth performance, glucose consumption, and mitochondrial ATP production of broilers[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1321-1328.
[3] YAN Song, ZHU Shan, MAO Ling-hua, HUANG Ren-liang, XIONG Hong-liang, SHEN Lin-jun, SHEN. Molecular identification of the cytoplasmic male sterile source from Dongxiang wild rice (Oryza rufipogon Griff.)[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1669-1675.
No Suggested Reading articles found!