Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (04): 1118-1133    DOI: 10.1016/j.jia.2023.05.004
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L.

Minghao Cai1, Xuhui Li1, 2, Zhi Liang1, Jie Wang1, Delin Li1, 3, Zhipeng Yuan1, Riliang Gu1, Jianhua Wang1#, Li Li1#

1 State Key Laboratory of Maize Bio-breeding/Key Laboratory of Crop Heterosis Utilization, Ministry of Education/Beijing Innovation Center for Crop Seed Technology/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

2 Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou 510316, China

3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

种子贮藏物质是种子发育过程中积累的物质,也是种子萌发、建苗所必需的物质。在这里,我们使用了由改良的220I220,低淀粉小种子)和PH4CV(高淀粉大种子)构建的F2:3群体以及X178(高淀粉)和其改进的基因渗入系I178(低淀粉)构建的RIL群体,以确定控制种子储存材料的基因。我们总共鉴定了12个同淀粉、蛋白质和油的QTLs,这解释了3.44-10.79% 的表型变异。其中,F2:3群体中鉴定的qSTA2-1RIL群体中鉴定的qSTA2-27.314-9.554Mb的区间部分重叠,解释了3.44-10.21% 的淀粉含量,因此选择进一步研究。qSTA2-2与每一代I220/PH4CV回交,最后精细定位缩小到199.7Kb的区间内,包含14ORFsI220/PH4CV(BC5F2)的NILs材料发育种子的转录组学分析表明,在20DAP时,种子中仅表达11ORFs,其中5个在NILI220上调表达6个下调表达NILI220NILPH4CV之间的DEGs被富集在淀粉代谢中富集、激素信号转导和糖胺聚糖降解途径中。对于5在NILI220下调表达ORFs其中编码乙醛脱氢酶的ORF4(Zm00001d002260)可能是qSTA2-2的候选基因。进一步分析验证表明,qSTA2-2位点的突变导致除淀粉和激素外,也造成了ABA积累、胚/胚乳比的功能障碍。



Abstract  

The seed storage materials accumulate during seed development, and are essential for seed germination and seedling establishment.  Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220 (I220, small seeds with low starch) and PH4CV (large seeds with high starch), as well as recombinant-inbred lines (RILs) of X178 (high starch) and its improved introgression line I178 (low starch), to identify the genes that control seed storage materials.  We identified a total of 12 QTLs for starch, protein and oil, which explained 3.44–10.79% of the phenotypic variances.  Among them, qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314–9.554 Mb, and they explained 3.44–10.21% of the starch content variation, so they were selected for further study.  Fine mapping of qSTA2-2 with the backcrossed populations of I220/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames (ORFs).  Transcriptomic analysis of developing seeds from the near-isogenic lines (NILs) of I220/PH4CV (BC5F2) showed that only 11 ORFs were expressed in 20 days after pollination (DAP) seeds.  Five of them were upregulated and six of them were downregulated in NILI220, and the differentially expressed genes (DEGs) between NILI220 and NILPH4CV were enriched in starch metabolism, hormone signal transduction and glycosaminoglycan degradation.  Of the eleven NILI220 differential expressed ORFs, ORF4 (Zm00001d002260) and ORF5 (Zm00001d002261) carry 75% protein sequence similarity, both encodes an glycolate oxidase, were the possible candidates of qSTA2-2.  Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation, the embryo/endosperm ratio and the starch and hormone levels.

Keywords:  QTL mapping        seed starch        transcriptomic analysis        hormone   
Received: 17 February 2023   Online: 24 March 2023   Accepted:
Fund: This work was supported by grants from the STI 2030-Major Projects, China (2022ZD040190101, 2022ZD040190502), the National Natural Science Foundation of China (32072130, 32272162 and 31701437), the Project of Sanya Yazhou Bay Science and Technology City, China (SCKJ-JYRC-2023-64), the 2115 Talent Development Program of China Agricultural University, and the China Agriculture Research System (CARS-02-13).
About author:  #Correspondence Li Li, E-mail: lili2016@cau.edu.cn; Jianhua Wang, E-mail: wangjh63@cau.edu.cn

Cite this article: 

Minghao Cai, Xuhui Li, Zhi Liang, Jie Wang, Delin Li, Zhipeng Yuan, Riliang Gu, Jianhua Wang, Li Li. 2024.

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L. . Journal of Integrative Agriculture, 23(04): 1118-1133.

Aloni R, Aloni E, Langhans M, Ullrich C I. 2006. Role of auxin in regulating arabidopsis flower development. Planta, 223, 315–328.

Blümmel M, Grings E, Erenstein O. 2013. Potential for dual-purpose maize varieties to meet changing maize demands: Synthesis. Field Crops Research, 153, 107–112.

Bu D C, Luo H T, Huo P P, Wang Z H, Zhang S, He Z H, Wu Y, Zhao L H, Liu J J, Guo J C, Fang S, Cao W C, Yi L, Zhao Y, Kong L. 2021. Kobas-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research, 49, W317–W325.

Cao J, Li G, Qu D, Li X, Wang Y. 2020. Into the seed: Auxin controls seed development and grain yield. International Journal of Molecular Sciences, 21, 1662.

Chung H S, Howe G A. 2009. A critical role for the tify motif in repression of jasmonate signaling by a stabilized splice variant of the jasmonate ZIM-domain protein jaz10 in arabidopsis. Plant Cell, 21, 131–145.

Churchill G A, Doerge R W. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138, 963–971.

Cook J P, Mcmullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. 2012. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 158, 824–834.

Dong Y, Zhang Z, Shi Q, Wang Q, Zhou Q, Li Y. 2015. Qtl identification and meta-analysis for kernel composition traits across three generations in popcorn. Euphytica, 204, 649–660.

Dudley J W. 1974. Seventy generations of selection for oil and protein concentration in the maize kernel. Maydica, 37, 79–110.

Feng S G, Yue R Q, Tao S, Yang Y J, Zhang L, Xu M F, Wang H Z, Shen C J. 2015. Genome-wide identification, expression analysis of auxin-responsive gh3 family genes in maize (Zea mays L.) Under abiotic stresses. Journal of Integrative Plant Biology, 57, 783–795.

Figueiredo Duarte D, Claudia K. 2018. Auxin: A molecular trigger of seed development. Genes & Development, 32, 479–490.

Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiology, 131, 1661–1670.

Guo Y Q, Yang X H, Subhash C, Yan J B, Zhang J, Song T M, Li J S. 2013. Identification of unconditional and conditional QTL for oil, protein and starch content in maize. Crop Journal, 1, 34–42.

Hannah L C, Boehlein S. 2017. Starch biosynthesis in maize endosperm. Maize Kernel Development. CABI, Boston, MA. pp. 149–159.

Hannah L C, James M. 2008. The complexities of starch biosynthesis in cereal endosperms. Current Opinion in Biotechnology, 19, 160–165.

Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. 2021. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnology Journal, 19, 2192–2205.

Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q. 2021. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Communications, 2, 5.

Karn A, Gillman J D, Flint-Garcia S A. 2017. Genetic analysis of teosinte alleles for kernel composition traits in maize. G3-Genes Genomes Genetics, 7, 1157–1164.

Kazan K, Manners J M. 2012. Jaz repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science, 17, 22–31.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nature Biotechnology, 37, 907.

Lambert R J, Hallauer A R. 1994. High-oil corn hybrids. Specialty Corns. 2nd ed. CRC Press, London. pp. 123–145.

Li H, Yao L, Sun L, Zhu Z. 2021. Correction: Ethylene insensitive 3 suppresses plant de novo root regeneration from leaf explants and mediates age-regulated regeneration decline. Development, 9, 148.

Li H, Ye G, Wang J. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics, 175, 361–374.

Liu N, Xue Y D, Guo Z Y, Li W H, Tang J H. 2016. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Frontiers in Plant Science, 7, 1046.

Liu N, Zhang Z, Xue Y, Meng S, Huang Y, Li W, Huang J, Tang J. 2018. Identification of quantitative trait loci and candidate genes for maize starch granule size through association mapping. Scientific Reports, 8, 14236.

Li X H, Wang G H, Fu J, Li L, Jia G Y, Ren L S, Lubberstedt T, Wang G Y, Wang J H, Gu R L. 2018. Qtl mapping in three connected populations reveals a set of consensus genomic regions for low temperature germination ability in Zea mays L. Frontiers in Plant Science, 9, 65.

Li Y, Wang Y, Wei M, Li X, Fu J. 2009. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). Journal of Genetics, 88, 61–67.

Liao Y, Smyth G K, Shi W. 2014. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Lin F, Zhou L, He B, Zhang X, Dai H, Qian Y, Ruan L, Zhao H. 2019. Qtl mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Theoretical and Applied Genetics, 132, 1931–1941.

Liu Y, Dong Y, Niu S, Cui D, Wang Y, Wei M, Li X, Fu J, Zhang Z, Chen H. 2008. QTL identification of kernel composition traits with popcorn using both f2:3 and bc2f2 populations developed from the same cross. Journal of Cereal Science, 48, 625–631.

Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014. Current perspectives on the hormonal control of seed development in arabidopsis and maize: a focus on auxin. Frontiers in Plant Science, 5, 412.

Luo J, Zhou J, Zhang J Z. 2018. Aux/iaa gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19, 259.

Mccleary B V, Gibson T S, Solah V, Mugford D C. 1994. Total starch measurement in cereal products - interlaboratory evaluation of a rapid enzymatic test procedure. Cereal Chemistry, 71, 501–505.

Nakashima K, Yamaguchi-Shinozaki K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports, 32, 959–970.

Null R, Team R, Null R, Writing T C, Null R, Team R, Null R, Core R, Team R, Team R. 2011. R: A language and environment for statistical computing. Computing, 1, 12–21.

Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology, 2, a1537.

Pattison R J, Csukasi F, Catala C. 2014. Mechanisms regulating auxin action during fruit development. Physiologia Plantarum, 151, 62–72.

Scott R J, Spielman M, Bailey J, Dickinson H G. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development, 125, 3329–3341.

Smit M E, Weijers D. 2015. The role of auxin signaling in early embryo pattern formation. Current Opinion in Plant Biology, 28, 99–105.

Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. 2005. Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17, 616–627.

Sundaresan V. 2005. Control of seed size in plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 17887–17888.

Tian T, Liu Y, Yan H Y, You Q, Yi X, Du Z, Xu W Y, Su Z. 2017. Agrigo v2.0: A go analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45, W122–W129.

Tu K L, Cheng Y, Ning C L, Yang C M, Dong X H, Cao H L, Sun Q. 2022. Non-destructive viability discrimination for individual scutellaria baicalensis seeds based on high-throughput phenotyping and machine learning. Agriculture, 12, 1616.

Val L D, Schwartz S H, Kerns M R, Deikman J. 2009. Development of a high oil trait for maize. Molecular Genetic Approaches to Maize Improvement, 63, 303–323.

Wang H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. 2020. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nature Communications, 11, 1.

Wassom J, Wong J C, Martinez E, King J, Debaene J, Hotchkiss J R, Mikkilineni V, Bohn M O, Rocheford T R. 2008. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in illinois high oil×B73 backcross-derived lines. Crop Science, 48, 243–252.

Whitt S R, Wilson L M, Tenaillon M I, Gaut B S, Edward I V. 2002. Genetic diversity and selection in the maize starch pathway. Proceedings of the National Academy of Sciences of the United States of America, 99, 12959–12962.

Wobus U, Weber H. 1999. Sugars as signal molecules in plant seed development. Biological Chemistry, 380, 937–944.

Woodhouse M R, Sen S, Schott D, Portwood J L, Freeling M, Walley J W, Andorf C M, Schnable J C. 2022. Qteller: A tool for comparative multi-genomic gene expression analysis. Bioinformatics, 38, 236–242.

Woodworth C M, Leng E R, Jugenheimer R W. 1952. 50 generations of selection for protein and oil in corn. Agronomy Journal, 44, 60–65.

Xiong J, Zhang W X, Zheng D, Xiong H, Feng X J, Zhang X M, Wang Q J, Wu F K, Xu J, Lu Y L. 2022. Zmlbd5 increases drought sensitivity by suppressing ros accumulation in Arabidopsis. Plants-Basel, 11, 10.

Xu D B, Yang Y, Tao S C, Wang Y L, Yuan H W, Sharma A, Wang X F, Shen C J, Yan D L, Zheng B S. 2020. Identification and expression analysis of auxin-responsive GH3 family genes in Chinese hickory (Carya cathayensis) during grafting. Molecular Biology Reports, 47, 4495–4506.

Zhang H D, Jin T T, Huang Y Q, Chen J T, Zhu L Y, Zhao Y F, Guo J J. 2015. Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments. Euphytica, 205, 169–183.

Zhang J J, Hu Y F, Zhou H. 2007. Starch accumulation and activities of key enzymes involved in starch synthesis in the grains of maize inbred lines with different starch contents. Journal of Plant Physiology and Molecular Biology, 33, 123.

[1] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[2] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(05): 1634-1643.

[3] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(03): 781-794.

[4] CHEN Ke-xin, DAI Dong-yang, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3331-3345.
[5] HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2949-2960.
[6] HE Peng, ZHANG Hui-zhi, ZHANG Li, JIANG Bin, XIAO Guang-hui, YU Jia-ning. The GhMAX2 gene regulates plant growth and fiber development in cotton[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1563-1575.
[7] CHEN Rong-zhu, SHEN Xu, ZHANG Shu-ting, ZHAO Hua, CHEN Xiao-hui, XU Xiao-ping, HUO Wen, ZHANG Zi-hao, LIN Yu-ling, LAI Zhong-xiong. Genome-wide identification and expression analysis of Argonaute gene family from longan embryogenic callus[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2138-2155.
[8] CHEN Chang-long, YUAN Fang, LI Xiao-ying, MA Rong-cai, XIE Hua. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1314-1326.
[9] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[10] ZHANG Hao, JING Wen-jiang, XU Jing-ju, MA Bing-ju, WANG Wei-lu, ZHANG Wei-yang, GU Jun-fei, LIU Li-jun, WANG Zhi-qin, YANG Jian-chang. Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2983-2996.
[11] CHEN Yan-hui, YANG Xiao-zhu, LI Zhuang, AN Xiu-hong, MA Ren-peng, LI Yan-qing, CHENG Cun-gang. Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2458-2469.
[12] GUAN Yan-ren, XUE Jing-qi, XUE Yu-qian, YANG Ruo-wen, WANG Shun-li, ZHANG Xiu-xin. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcingcultured tree peony (Paeonia suffruticosa)[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1295-1311.
[13] LIU Zheng-jie, ZHAO Yan-peng, ZENG Ling-he, ZHANG Yuan, WANG Yu-mei, HUA Jin-ping. Characterization of GhSERK2 and its expression associated with somatic embryogenesis and hormones level in Upland cotton[J]. >Journal of Integrative Agriculture, 2018, 17(03): 517-529.
[14] WANG Hao-jie, JIANG Yong-hua, QI Ying-wei, DAI Jie-yu, LIU Yan-li, ZHU Xian-bo, LIU Cui-hua, Lü Yan-rong, REN Xiao-lin . Identification and functional characterization of the MdHB-1 gene promoter sequence from Malus×domestica[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1730-1741.
No Suggested Reading articles found!