Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (1): 98-105    DOI: 10.1016/S2095-3119(13)60731-5
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Compatibility of Beauveria bassiana with Neoseiulus barkeri for Control of Frankliniella occidentalis
 WU Sheng-yong, GAO Yu-lin, XU Xue-nong, Mark S Goettel, LEI Zhong-ren
1、State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, P.R.China
2、Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge AB, Canada
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin and predatory mite Neoseiulus barkeri Hughes are effective biological control agents of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), one of the most important pests of ornamentals and vegetables world-wide. Combined application of both may enhance control efficiency. The functional response for N. barkeri on the first instar larvae of western flower thrips which were infected by B. bassiana for 12 and 24 h in the laboratory ((25±1)°C, (70±5)% RH, L:D=16 h:8 h) was determined. The virulence of B. bassiana against the second instar and pupae of the thrips attacked by N. barkeri were also tested. The results showed that N. barkeri exhibited a Holling type II functional response on treated thrips. After having been treated with the fungus for 12 h and then offered to the predator, thrips were more vulnerable to be killed by N. barkeri. The second instar larvae and pupae of the thrips which had been attacked by predatory mites were markedly more susceptible to B. bassiana infection than normal thrips; the cumulative corrected mortality of B. bassiana of the second instar and pupae which were attacked by N. barkeri were 57 and 94%, respectively, compared to 35 and 80% in controls on the day 8. These findings highlight the potential use of B. bassiana in combination with N. barkeri to control F. occidentalis.

Abstract  The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin and predatory mite Neoseiulus barkeri Hughes are effective biological control agents of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), one of the most important pests of ornamentals and vegetables world-wide. Combined application of both may enhance control efficiency. The functional response for N. barkeri on the first instar larvae of western flower thrips which were infected by B. bassiana for 12 and 24 h in the laboratory ((25±1)°C, (70±5)% RH, L:D=16 h:8 h) was determined. The virulence of B. bassiana against the second instar and pupae of the thrips attacked by N. barkeri were also tested. The results showed that N. barkeri exhibited a Holling type II functional response on treated thrips. After having been treated with the fungus for 12 h and then offered to the predator, thrips were more vulnerable to be killed by N. barkeri. The second instar larvae and pupae of the thrips which had been attacked by predatory mites were markedly more susceptible to B. bassiana infection than normal thrips; the cumulative corrected mortality of B. bassiana of the second instar and pupae which were attacked by N. barkeri were 57 and 94%, respectively, compared to 35 and 80% in controls on the day 8. These findings highlight the potential use of B. bassiana in combination with N. barkeri to control F. occidentalis.
Keywords:  Beauveria bassiana       Neoseiulus barkeri       Frankliniella occidentalis       functional response       virulence  
Received: 28 October 2013   Accepted:
Fund: 

This research was supported by the Special Fund for Agro- Scientific Research in the Public Interest, China (200903032), National Modern Agricultural Science and Technology City Industry of Beijing, China (Z121100001212006).

Corresponding Authors:  LEI Zhong-ren, Tel: +86-10-62815930, Fax: +86-10-62895365, Email: zrlei@ippcaas.cn     E-mail:  zrlei@ippcaas.cn
About author:  WU Sheng-yong, Mobile: 18500329646, E-mail: wusheng yong2014@163.com;

Cite this article: 

WU Sheng-yong, GAO Yu-lin, XU Xue-nong, Mark S Goettel, LEI Zhong-ren. 2015. Compatibility of Beauveria bassiana with Neoseiulus barkeri for Control of Frankliniella occidentalis. Journal of Integrative Agriculture, 14(1): 98-105.

Abbott W S. 1925. A method for computing the effectivenessof insecticides. Journal of Economic Entomology, 18,265–267

.Alma C R, Gillespie D R, Roitberg B D, Goettel M S. 2010.Threat of infection and threat-avoidance behavior in thepredator Dicyphus hesperus feeding on whitefly nymphsinfected with an entomopathogen. Journal of InsectBehavior, 23, 90–99.

Berndt O. 2003. Entomopathogenic Nematodes and Soil-Dwelling Predatory Mites: Suitable Antagonists forEnhanced Biological Control of Frankliniella occidentalis(Pergande) (Thysanoptera: Thripidae)? Ph D thesis.Hannover University, Germany.

Berndt O, Meyhöfer R, Poehling, H M. 2004. The edaphicphase in the ontogenesis of Frankliniella occidentalisand comparison of Hypoaspis miles and H. aculeifer aspredators of soil-dwelling thrips stages. Biological Control,30, 17–24.

Boaria A, Rossignolo L, Pozzebon A, Duso C. 2011. Effectsof Beauveria bassiana on Frankliniella occidentalis(Thysanoptera: Thripidae) through different routes ofexposure. International Organization for Biological Control/West Palaearctic Regional Section Bulletin, 66, 245–248.

Brødsgaard H F. 1989. Frankliniella occidentalis (Thysanoptera:Thripidae)-a new pest in Danish glasshouses. A review.Tidsskrift of Plantealv, 93, 83–91.

Brødsgaard H F. 1994. Insecticide resistance in Europeanand African strains of western flower thrips (Thysanoptera:Thripidae) tested in a new residual on glass test. Journal ofEconomic Entomology, 87, 1141–1146.

Butt T M. 1990. Fungal infection process-A minireview.Proceedings and abstracts, Vth International Colloquiumon Invertebrate Pathology and Microbial Control, Adelaide,Australia, 20-24 August 1990 Department of Entomology,University of Adelaide, Glen Osmond, Australia pp121–124

Butt T M, Brownbridge M. 1997. Fungal pathogens of thrips.In: Lewis T, ed., Thrips as Crop Pests. CAB International,Wallingford, UK. pp. 399–433.

Castagnoli M, Simoni S. 2003. Neoseiulus californicus(McGregor) (Acari: Phytoseiidae): Survey of biologicaland behavioural traits of a versatile predator. Redia, 86,153–164.

De Courcy Williams M E. 2001. Biological control ofthrips on ornamental crops: interactions between thepredatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and western flower thrips, Frankliniella occidentalis(Thysanoptera: Thripidae), on cyclamen. Biocontrol Scienceand Technology, 11, 41–55.

Ferron P. 1978. Biological control of insect pests byentomogenous fungi. Annual Review of Entomology, 23,409-442

Gao Y L, Lei Z R, Reitz S R. 2012a. Western flower thripsresistance to insecticides: detection, mechanisms andmanagement strategies. Pest Management Science, 68,1111–1121.

Gao Y L, Reitz S R, Wang J, Tamez-Guerra P, Wang E D, XuX N, Lei Z R. 2012b. Potential use of the fungus Beauveriabassiana against the western flower thrips Frankliniellaoccidentalis without reducing the effectiveness of itsnatural predator Orius sauteri (Hemiptera: Anthocoridae).Biocontrol Science and Technology, 22, 803–812.

Gao Y L, Reitz S R, Wang J, Xu X N, Lei Z R. 2012c. Potentialof a strain of the entomopathogenic fungus Beauveriabassiana (Hypocreales: Cordycipitaceae) as a biologicalcontrol agent against western flower thrips, Frankliniellaoccidentalis (Thysanoptera: Thripidae). Biocontrol Scienceand Technology, 22, 491–495.

Gillespie D R. 1989. Biological control of thrips (Thysanoptera:Thripidae) on greenhouse cucumber by Amblyseiuscucumeris. Entomophaga, 34, 185–192.

Gotoh T, Nozawa M, Yamaguchi K. 2004. Prey consumptionand functional response of three acarophagous species toeggs of the two-spotted spider mite in the laboratory. AppliedEntomology and Zoology, 39, 97–105.

Helyer N L, Brobyn P J, Richardso P N, Edmondson R N. 1995.Control of western flower thrips (Frankliniella occidentalisPergande) pupae in compost. Annals of Applied Biology,127, 405–412.

van der Hoeven W A D, van Rijn P C J. 1990. Factors affectingthe attack success of predatory mites on thrips larvae.Proceedings of the Section Experimental and AppliedEntomology of the Netherlands Entomological Society (NEVAmsterdam), 1, 25–30

Holling C S. 1959. The components of predation as revealedby a study of small-mammal predation of the European pinesawfly. Canadian Entomologist, 91, 293–320.

Jacobson R J, Chandler D, Fenlon J, Russell K M. 2001.Compatibility of Beauveria bassiana (Balsamo) Vuilleminwith Amblyseius cucumeris Oudemans (Acarina:Phytoseiidae) to control Frankliniella occidentalis Pergande(Thysanoptera: Thripidae) on cucumber plants. BiocontrolScience and Technology, 11, 391–400.

Jacobson R J, Croft P, Fenlon J. 2000. Suppressingestablishment of Frankliniella occidentalis Pergande(Thysanoptera: Thripidae) in cucumber crops by prophylacticrelease of Amblyseius cucumeris Oudemans (Acarina:Phytoseiidae). Biocontrol Science and Technology, 11,27–34.

Jarosik V, Pliva J. 1995. Assessment of Amblyseius barkeri(Acarina: Phytoseiidae) as a control agent for thrips ongreenhouse cucumbers. Acta Societatis ZoologicaeBohemicae, 59, 177–186.

Koppenhofer A M, Grewal P S. 2005. Compatibility andinteractions with agrochemicals and other biocontrol agents.Nematodes as Biocontrol Agents, Centre AgricultureBioscience International (CABI) publishing, London, UK.pp. 363-381.

Labbe R M, Cloutier C, Brodeur J. 2006. Prey selection byDicyphus hesperus of infected or parasitized greenhousewhitefly. Biocontrol Science and Technology, 16, 485–494.

Labbe R M, Gillespie D R, Cloutier C, Brodeur J. 2009.Compatibility of an entomopathogenic fungus with apredator and a parasitoid in the biological control ofgreenhouse whitefly. Biocontrol Science and Technology,19, 429–446.

LeOra Software. 1987. Polo-PC. A Users’ Guide to Probit orLogit Analysis. LeOra Software, Berkeley, CA.

Liang X H, Lei Z R, Wen J Z, Zhu M L. 2010. The diurnal flightactivity and influential factors of Frankliniella occidentalis inthe greenhouse. Insect Science, 17, 535–541.

Maniania N K, Ekesi S, Löhr B, Mwangi F. 2002. Prospectsfor biological control of the western flower thrips,Frankliniella occidentalis, with the entomopathogenicfungus, Metarhizium anisopliae, on chrysanthemum.Mycopathologia, 155, 229–235.

Morse J G, Hoddle M S. 2006. Invasion biology of thrips. AnnualReview of Entomology, 51, 67-89.

Mwangi E N, Dipeolu O O, Newson R M, Kaaya G P, HassanS M. 1991. Predators, parasitoids and pathogens of ticks:a review. Biocontrol Science and Technology, 1, 147–156.

Premachandra W T S D, Borgemeister C, Berndt O, EhlersR U, Poehling H M. 2003. Combined releases ofentomopathogenic nematodes and the predatory miteHypoaspis aculeifer to control soil-dwelling stages ofwestern flower thrips Frankliniella occidentalis. BioControl,48, 529–541.

Rahman T, Spafford H, Broughton S. 2012. Use of spinosadand predatory mites for the management of Frankliniellaoccidentalis in low tunnel-grown strawberry. EntomologiaExperimentalis et Applicata, 142, 258–270.

Ravensberg W J, Malais M, van der Schaaf D A. 1990. Verticilliumlecanii as a microbial insecticide against glasshousewhitefly, In: Brighton Crop Protection Conference-Pestsand Disease British Crop Protection Council. The LavenhamPress, Lavenham. pp. 265–268.

Reitz S R, Gao Y L, Lei Z R. 2011. Thrips: Pests of concernto China and the United States. Agricultural Sciences inChina, 10, 867–892.

Rosa W, de la Segura H R, Barrera J F, Williams T. 2000.Laboratory evaluation of the impact of entomopathogenicfungi on Prorops nasuta (Hymenoptera: Bethylidae),a parasitoid of the coffee berry borer. EnvironmentalEntomology, 29, 126–131.

Roy H E, Pell J K. 2000. Interactions between entomopathogenicfungi and other natural enemies: implications for biologicalcontrol. Biocontrol Science and Technology, 10, 737–752.

SAS Institute. 1988. SAS/STAT User’s Guide. Ver. 6.03. SAS Institute, Cary, NC.

Seiedy M, Saboori A, Allahyari H, Hassanloui R T, Tork M.2012. Functional response of Phytoseiulus persimilis (Acari:Phytoseiidae) on untreated and Beauveria bassiana-treatedadults of Tetranychus urticae (Acari: Tetranychidae).Journal of Insect Behavior, 25, 543–553.

Shipp L, Kapongo J P, Park H H Kevan P. 2012. Effect of beevectoredBeauveria bassiana on greenhouse beneficialsunder greenhouse cage conditions. Biological Control, 63,135–142.

Sunderland K D, Axelsen J A, Dromph K, Freier B, Hemptinne JL, Holst N H, Mols P J M, Petersen M K, Powell W, RuggleP, Triltsch H, Winder L. 1997. Pest control by a communityof natural enemies. Acta Jutlandica, 72, 271–326.

Tommasini M G, Maini S. 1995. Frankliniella occidentalis andother thrips harmful to vegetable and ornamental crops inEurope. In: Loomans A J M, Van Lenteren J C, TommasiniM G, Maini S, Riudavets J, eds., Biological Control ofThrips Pests. Wageningen, Agricultural University Papers,Wageningen, The Netherland. pp.1–42.

Ugine T A, Wraight S P, Brownbridge M, Sanderson J P.2005. Development of a novel bioassay for estimation ofmedian lethal concentrations (LC50) and doses (LD50) ofthe entomopathogenic fungus Beauveria bassiana, againstwestern flower thrips, Frankliniella occidentalis. Journal ofInvertebrate Pathology, 89, 210–218.

Vestergaard S. 1995. Pathogenicity of the hyphomycete fungiVerticillium lecanii and Metarhizium anisopliae to thewestern flower thrips, Frankliniella occidentalis. BiocontrolScience and Technology, 5, 185–192.

Wang J P, Zheng C Y. 2012. Characterization of a newlydiscovered Beauveria bassiana isolate to Franklimiellaoccidentalis Perganda, a non-native invasive species inChina. Microbiological Research, 167, 116–120.

Wang J, Lei Z R, Xu H F, Gao Y L, Wang H H. 2011. Virulenceof Beauveria bassiana isolates against the first instar larvaeof Frankliniella occidentalis and effects on natural enemyAmblyseius barkeri. Chinese Journal of Biological Control,27, 479–484. (in Chinese)

Wang Y H, Zheng C Y, Wang J P. 2011. Virulence of Beauveriabassiana to Frankliniella occidentalis adults and scanningelectron microscopic observation on its infection process.Chinese Journal of Biological Control, 27, 324–330. (inChinese)

Wekesa V W, Moraes G J, Knapp M, Delalibera I. 2007.Interactions of two natural enemies of Tetranychus evansi,the fungal pathogen Neozygites floridana (Zygomycetes:Entomophthorales) and the predatory mite, Phytoseiuluelongipes (Acari: Phytoseiidae). Biological Control, 41,408–414.

Wen J Z, Lei Z R, Tan Z H, Wang Y, Fu W, Huang H. 2003.Pathogenicity of five Beauveria bassiana strains againstLocusta migratoria. Plant Protection, 29, 50–52. (in Chinese)

Wu S Y, Gao Y L, Zhang Y P, Wang E D, Xu X N, Lei Z R. 2014.An entomopathogenic strain of Beauveria bassiana againstFrankliniella occidentalis with no detrimental effect on thepredatory mite Neoseiulus barkeri: evidence from laboratorybioassay and scanning electron microscopic observation.PLOS ONE. 9, e84732.

Xu X N, Lv J L, Wang E D. 2013. Research and applicationsof predatory mites in China. Plant Protection, 33, 26–34.(in Chinese)

Yuan S Y, Zhang H R, Kong Q L, Zheng Y L, Di Q, Wang X L,Dong L L. 2010. Detection of pathogenicity of Beauveryiabassiana MZ060812 against Frankliniella occidentalis.Journal of Northwest A&F University (Natural ScienceEdition), 38, 145–149. (in Chinese)

Zhang S H, Lei Z R, Fan S Y, Wen J Z. 2009. Pathogenicityof four Beauveria bassiana strains against Frankliniellaoccidentalis at different temperatures. Plant Protection, 35,64–67. (in Chinese)
[1] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[2] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[3] XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie. The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence[J]. >Journal of Integrative Agriculture, 2023, 22(2): 568-584.
[4] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[5] YU Wen-ying, LIN Mei, YAN Hui-juan, WANG Jia-jia, ZHANG Sheng-min, LU Guo-dong, WANG Zong-hua, Won-Bo SHIM. The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2957-2972.
[6] SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2156-2169.
[7] TIAN Li, HUANG Cai-min, ZHANG Dan-dan, LI Ran, CHEN Jie-yin, SUN Wei-xia, QIU Nian-wei, DAI Xiao-feng. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1858-1870.
[8] LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 829-839.
[9] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[10] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[11] QIN Jia-xing, LI Bao-hua, ZHOU Shan-yue. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2725-2735.
[12] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
[13] ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2784-2791.
[14] WANG Qian-nan, HUANG Pan-pan, ZHOU Shan-yue. Functional characterization of the catalytic and bromodomain of FgGCN5 in development, DON production and virulence of Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2477-2487.
[15] ZHENG Na, ZHANG Liu-ping, GE Feng-yong, HUANG Wen-kun, KONG Ling-an, PENG De-liang, LIU Shi-ming. Conidia of one Fusarium solani isolate from a soybean-production field enable to be virulent to soybean and make soybean seedlings wilted[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2042-2053.
No Suggested Reading articles found!