Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (3): 829-839    DOI: 10.1016/S2095-3119(20)63291-9
Section 4: Integrated pest management Advanced Online Publication | Current Issue | Archive | Adv Search |
Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)
LI Hui1, 2, JIANG Shan-shan2, ZHANG Hao-wen2, GENG Ting3, Kris A. G. WYCKHUYS2, WU Kong-ming2
1 Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China
2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
3 Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

草地贪夜蛾于2018年入侵亚洲后,迅速扩散,成为影响玉米生产安全的重大害虫。农药的使用减缓了草地贪夜蛾的为害,但由于长期使用的局限性,可替代或辅助农药的生物防治技术目前依然是国内外关注的焦点。大灰食蚜蝇(双翅目:食蚜蝇科)是玉米等多种作物田内的优势天敌昆虫,可取食草地贪夜蛾幼虫。本研究在室内模拟田间环境,研究了大灰食蚜蝇Eupeodes corollae幼虫对草地贪夜蛾卵和不同龄期幼虫的捕食能力。结果表明,2龄、3龄大灰食蚜蝇幼虫对1龄和2龄草地贪夜蛾的幼虫具有捕食作用,理论日最大捕食量分别为43.48头和83.33头。当草地贪夜蛾幼虫发育至3龄后,显现出对低龄大灰食蚜蝇幼虫的捕食行为,5龄和6龄草地贪夜蛾幼虫对1龄、2龄、3龄大灰食蚜蝇的理论日最大捕食量分别为16.39-19.23头、6.02-19.61头和6.76-8.26头,捕食作用符合功能反应Ⅲ。表明草地贪夜蛾幼虫与大灰食蚜蝇存在捕食互作关系,其入侵后将影响大灰食蚜蝇等天敌昆虫的种群动态。综上,本试验为鳞翅目害虫与天敌昆虫的互作关系研究提供了新的思路,对综合评价草地贪夜蛾与天敌昆虫的物种关系和发展生物防治技术具有重要意义。




Abstract  
Since its 2018 invasion of eastern Asia, the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) has become a key pest in local maize production.  Though pesticides have been widely used to mitigate the initial S. frugiperda attack, biological control is receiving ample attention as a desirable, environmentally-sound alternative to chemical control.  Hoverflies (Diptera: Syrphidae) are abundant natural enemies in Chinese maize fields and have been observed to consume S. frugiperda larvae.  In this study, we use laboratory assays to study the two-way interaction between immature stages of S. frugiperda and the endemic syrphid Eupeodes corollae.  To mimic natural conditions, assays were performed in the presence of fresh maize leaves.  Those 2nd or 3rd instar larvae of E. corollae preyed on 1st and 2nd instar S. frugiperda larvae with a Holling type III response, consuming a respective theoretical maximum of 43.48 and 83.33 larvae over a 24-h period.  Conversely, once S. frugiperda larvae reached 3rd instar, they exhibited aggressive behavior and equally preyed on syrphid larvae with a Holling type III response.  Those 5th and 6th instar larvae of S. frugiperda consumed a respective 16.39–19.23, 6.02–19.61 and 6.76–8.26 of 1st, 2nd and 3rd instar E. corollae larvae per day.  Though our results await field-level validation, S. frugiperda agonistic (i.e., defensive) and consumptive behavior towards resident natural enemies such as E. corollae possibly degrades biotic resistance and raises its invasion potential.  Our findings shine new light on the interaction between lepidopteran herbivores and their natural enemies, and can help advance the development of conservation biological control and other integrated pest management (IPM) strategies against S. frugiperda in China and abroad.  
 
Keywords:  Eupeodes corollae        Spodoptera frugiperda        predation        functional response        conservation biological control        invasion biology        trophic ecology  
Received: 23 March 2020   Accepted:
Fund: This work was supported by the earmarked fund for China Agriculture Research System (CARS-15-19).
Corresponding Authors:  Correspondence WU Kong-ming, E-mail: wukongming@caas.cn   
About author:  LI Hui, E-mail: lihuilh521@163.com;

Cite this article: 

LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . 2021. Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith). Journal of Integrative Agriculture, 20(3): 829-839.

Andrews K L. 1988. Latin American research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist, 71, 630–653.
Balzan M V, Wäckers F L. 2013. Flowers to selectively enhance the fitness of a host-feeding parasitoid: Adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biological Control, 67, 21–31.
Baudron F, Zaman-Allah M A, Chaipa I, Chari N, Chinwada P. 2019. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Protection, 120, 141–150.
Bentivenha J P F, Baldin E L L, Montezano D G, Hunt T E, Paula-Moraes S V. 2017. Attack and defense movements involved in the interaction of Spodoptera frugiperda and Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Pest Science, 90, 433–445.
Bradshaw C J A, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles J M, Simard F, Courchamp F. 2016. Massive yet grossly underestimated global costs of invasive insects. Nature Communications, 7, 1–8.
Chaplin-Kramer R, O’Rourke M, Zhang W, Robinson B, Schellhorn N, Gratton C, Rosenheim J A, Tscharntke T, Karp D S. 2019. Measuring what matters: Actionable information for conservation biocontrol in multifunctional landscapes. Frontiers in Sustainable Food Systems, 3, 1–10.
Chapman J W, Williams T, Martínez A M, Cisneros J, Caballero P, Cave R D, Goulson D. 2000. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behavioral Ecology and Sociobiology, 48, 321–327.
Chen J Q, Snell T W, Guo R X. 2014. The effect of interference competition in Asplanchna brightwelli on its predation capacity. Journal of Plankton Researh, 36, 1391–1395.
Chen Z M, Zhao L C, Liu H, Liao Y X, Wang X. 2019. Parasitic behavior and effect of Microplitis similis on Spodoptera frugiperda larvae. Plant Protection, 45, 71–74. (in Chinese)
De Clercq P, Mohaghegh J, Tirry L. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control, 18, 65–70.
Crowder D W, Snyder W E. 2010. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 12, 2857–2876.
Dao T H, Nguyen V L, Ph?m V L, Wyckhuys K A G, Nguy?n T T, Tr?n T T H, Ph?m D T, Nguy?n D V. 2020. First record of fall armyworm Spodoptera frugiperda (J.E. Smith), (Lepidoptera: Noctuidae) on maize in Viet Nam. Zootaxa, 4772, 396–400.
Desneux N, O’neil R J, Yoo H J S. 2006. Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: The identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environmental Entomology, 35, 1342–1349.
Van Driesche R G, Carruthers R I, Center T, Hoddle M S, Hough-Goldstein J, Morin L, Smith L, Wagner D L, Blossey B, Brancatini V, Casagrande R, Causton C E, Coetzee J A, Cuda J, Ding J, Fowler S V, Frank J H, Fuester R, van Klinken R D. 2010. Classical biological control for the protection of natural ecosystems. Biological Control, 54, 2–33.
Van Driesche R G, Hoddle M. 1997. Should arthropod parasitoids and predators be subject to host range testing when used as biological control agents? Agriculture and Human Values, 14, 211–226.
Early R, González-Moreno P, Murphy S T, Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota, 40, 25–50.
Edgerly J S, Willey M S, Livdahl T P. 1993. The community ecology of Aedes egg hatching-implications for a mosquito invasion. Ecological Entomology, 18, 123–128.
Frost C M, Peralta G, Rand T A, Didham R K, Varsani A, Tylianakis J M. 2016. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nature Communications, 7, 1–12.
Goergen G, Kumar P L, Sankung S B, Togola A, Tamò, Manuele, Luthe D S. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11, e0165632.
Graham K K, Eaton K, Obrien I, Starks P T. 2019. Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources. Biological Invasions, 21, 1089–1099.
Greene G L, Leppla N C, Dickerson W A. 1976. Velvetbean caterpillar: A rearing procedure and artificial medium. Journal of Economic Entomology, 69, 487–488.
Gurr G M, Wratten S D, Landis D A, You M. 2017. Habitat management to suppress pest populations: Progress and prospects. Annual Review of Entomology, 62, 91–109.
Heimpel G E, Mills N J. 2017. Biological Control. Cambridge University Press, Cambridge, U.K.
Holt R D, Bonsall M B. 2017. Apparent competition. Annual Review of Ecology, Evolution, and Systematics, 48, 447–471.
Horrocks K J, Ward D, Suckling D M. 2019. Can natural enemies of current insect pests provide biotic resistance to future pests? Agricultural and Forest Entomology, 22, 20–29.
Huo L X, Zhou J C, Ning S F, Zhao Q, Zhang L X, Zhang Z T, Zhang L S, Dong H. 2019. Biological characteristics of Telenomus remus against Spodoptera frugiperda and Spodoptera litura eggs. Plant Protection, 45, 60–64. (in Chinese)
Jiang Y Y, Liu J, Xie M C, Li Y H, Yang J J, Zhang M L, Qiu K. 2019. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 45, 10–19. (in Chinese)
Jonsson M, Wratten S D, Landis D A, Tompkins J M L, Cullen R. 2010. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biological Invasions, 12, 2933–2945.
Johnson S J. 1987. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. International Journal of Tropical Insect Science, 8, 543–549.
Juliano S A. 2001. Nonlinear curve fitting: Predation and functional response curves. In: Scheiner S M, Gurevitch J, eds., Design and Analysis of Ecological Experiments. Oxford University Press, Oxford. pp. 178–196.
Kotwal D R, Bhalla O P, Verma A K. 1984. Natural enemies of the cabbage aphid, Brevicoryna brassicae (Linn.) in the mid-hill regions of Himachal Pradesh. Indian Journal of Agricultural Sciences, 54, 1011–1012.
Labatte J M. 1993. Within-plant distribution of fall armyworm (Lepidoptera: Noctuidae) larvae on corn during whorl-stage infestation. Florida Entomologist, 76, 437–447.
Lan X, Luo J, Cheng X Y. 2011. Control of soybean by predatory syrphids in northeast China. Chinese Journal of Applied Entomology, 48, 1625–1630. (in Chinese)
Laubertie E A, Wratten S D, Hemptinne J L. 2012. The contribution of potential beneficial insectary plant species to adult hoverfly (Diptera: Syrphidae) fitness. Biological Control, 61, 1–6.
Li Z G, Lv X, Ya Y K, Xu Q Y, Ye J W, Han S C, Zhang C L, Li J. 2019. The parasitism of Telenomus remus and Trichogramma chilonis on Spodoptera frugiperda found in the fields of Guangzhou and Hong Kong. Journal of Environmental Entomology, 41, 760–765. (in Chinese)
Liu H, Stiling P. 2006. Testing the enemy release hypothesis: A review and meta-analysis. Biological Invasions, 8, 1535–1545.
Liu J B, Cui Y H, Gao J F, Wang W H, Cheng X H, Liu Z Y. 2005. Study on biological characters of Eupeodes corollae (Fabricius). Journal of Jilin Agricultural Sciences, 30, 38–39. (in Chinese)
Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318, 1769–1772.
Lucas E, Coderre D, Vincent C. 1997. Voracity and feeding preferences of two aphidophagous coccinellids on Aphis citricola and Tetranychus urticae. Entomologia Experimentalis et Applicata, 85, 151–159.
Macfadyen S, Davies A P, Zalucki M P. 2015. Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Science, 22, 20–34.
Madahi K, Sahragard A, Hosseini R. 2015. Predation rate and numerical response of Aphidoletes aphidimyza feeding on different densities of Aphis craccivora. Biocontrol Science and Technology, 25, 72–83.
Mengual X, Stahls G, Rojo S. 2008a. First phylogeny of predatory flower flies (Diptera, Syrphidae, Syrphinae) using mitochondrial COI and nuclear 28S rRNA genes: Conflict and congruence with the current tribal classification. Cladistics, 24, 543–562.
Mengual X, Stahls G, Rojo S. 2008b. Molecular phylogeny of Allograpta (Diptera, Syrphidae) reveals diversity of lineages and non-monophyly of phytophagous taxa. Molecular Phylogenetics and Evolution, 49, 715–727.
Messina F J, Hanks J B. 1998. Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). Environmental Entomology, 27, 1196–1202.
Messing R H, Wright M G. 2006. Biological control of invasive species: Solution or pollution? Frontiers in Ecology and the Environment, 4, 132–140.
Mohaghegh J, De Clercq P, Tirry L. 2001. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae): Effect of temperature. Journal of Applied Entomology, 125, 131–134.
Molina-Ochoa J, Carpenter J E, Heinrichs E A, Foster J E. 2003. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: An inventory. Florida Entomologist, 86, 254–289.
Montezano D G, Specht A, Sosa-Gómez D R, Roque-Specht V F, Sousa-Silva J C, Paula-Moraes S V, Peterson J A, Hunt T E. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26, 286–301.
Mukherjee S, Heithaus M R. 2013. Dangerous prey and daring predators: A review. Biological Reviews, 88, 550–563.
Murdoch W W. 1973. The functional response of aphid predators. Journal of Applied Ecology, 10, 335–342.
Naranjo S E, Ellsworth P C, Frisvold G B. 2015. Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology, 60, 621–645.
Neuenschwander P, Herren H R. 1988. Biological control of the cassava mealybug, Phenacoccus manihoti by the exotic parasitoid Epidinocarsis lopezi in Africa. Biological Sciences, 318, 319–333.
Paini D R, Sheppard A W, Cook D C, De Barro P J, Worner S P, Thomas M B. 2016. Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America, 113, 7575–7579.
Pejchar L, Mooney H A. 2009. Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24, 497–504.
Perring T M, Cooper A D, Rodriguez R J, Farrar C A, Bellows T S. 1993. Identification of a whitefly species by genomic and behavioral studies. Science, 259, 74–77.
Pierce N E. 1995. Predatory and parasitic Lepidoptera: Carnivores living on plants. Journal of the Lepidopterists Society, 49, 412–453.
Powell J A, Mitter C, Farrell B. 1998. Evolution of larval food preferences in Lepidoptera. Evolution Systematics, and Biogeography, 1, 403–422.
Pu D Q, Liu H L, Gong Y Y, Ji P C, Li Y J, Mou F S, Wei S J. 2017. Mitochondrial genomes of the hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae), with a phylogenetic analysis of Muscomorpha. Scientific Reports, 7, 44300.
Putra N S, Yasuda H. 2006. Effects of prey species and its density on larval performance of two species of hoverfly larvae, Episyrphus balteatus de Geer and Eupeodes corollae Fabricius (Diptera: Syrphidae). Applied Entomology and Zoology, 41, 389–397.
R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rowles A D, O’Dowd D J. 2007. Interference competition by Argentine ants displaces native ants: Implications for biotic resistance to invasion. Biological Invasions, 9, 73–85.
Roy H E, Brown P M, Adriaens T, Berkvens N, Borges I, Clusella-Trullas S, Comont R F, Clercq D, Eschen R, Estoup A, Evans E W. 2016. The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biological Invasions, 18, 997–1044.
Rutledge C E, O’Neil R J, Fox T B, Landis D A. 2004. Soybean aphid predators and their use in integrated pest management. Annals of the Entomological Society of America, 97, 240–248.
Sáez A, Morales C L, Garibaldi L A, Aizen M A. 2017. Invasive bumble bees reduce nectar availability for honey bees by robbing raspberry flower buds. Basic and Applied Ecology, 19, 26–35.
Sharanabasappa D, Kalleshwaraswamy C M, Asokan R, Mahadeva S H M, Maruthi M S, Pavithra H B, Hegde K, Navi S, Prabhu S T, Goergen G. 2018. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems, 24, 23–29.
Da Silva Nunes G, Do Nascimento I N, De Souza G M M, De Oliveira R, De Oliveira F Q, De Luna Batista J. 2017. Biological aspects and predation behavior of Ceraeochrysa cubana against Spodoptera frugiperda. Revista Brasileira de Ciencias Agrarias, 12, 20–25.
Silva R B D, Corrêa A S, Della Lucia T M C, Pereira A I A, Cruz I, Zanuncio J C. 2012. Does the aggressiveness of the prey modify the attack behavior of the predator Supputius cincticeps (Stål)(Hemiptera, Pentatomidae)? Revista Brasileira de Entomologia, 56, 244–248.
Stahls G, Hippa H, Rotheray G, Muona J, Gilbert F. 2003. Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters. Systematic Entomology, 28, 433–450.
Sun X X, Hu C X, Jia H R, Wu Q L, Shen X J, Zhao S Y, Jiang Y Y, Wu K M. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture, 20, 664–672.
Sutherland J P, Sullivan M S, Poppy G M. 2001. Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats. Agricultural and Forest Entomology, 3, 57–64.
Symondson W O C, Sunderland K D, Greenstone M H. 2002. Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561–594.
Tang Y T, Li Y Y, Liu C X, Mao J J, Chen H Y, Zhang L S, Wang M Q. 2019. Predation and behavior of Arma chinensis to Spodoptera frugiperda. Plant Protection, 45, 65–68. (in Chinese)
Wang Y, Zhang H M, Yi Y Q, Li X Y, Zhao X Q, Tang Y T, Wang M Q, Shen A D, Chen F S, Zhang L S. 2019. Predation of adult of Arma chinensis to larvae of Spodoptera frugiperda. Plant Protection, 45, 42–46. (in Chinese)
White A J, Wratten S D, Berry N A, Weigmann U. 1995. Habitat manipulation to enhance biological control of Brassica pests by hoverflies (Diptera: Syrphidae). Journal of Economic Entomology, 88, 1171–1176.
Wratten S D, White A J, Bowie M H, Berry N A, Weigmann U. 1995. Phenology and ecology of hoverflies (Diptera: Syrphidae) in New Zealand. Environmental Entomology, 24, 595–600.
Wu Q L, Jiang Y Y, Hu G, Wu K M. 2019. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protection, 45, 1–9. (in Chinese)
Wyckhuys K A G, O’Neil R J. 2006. Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Protection, 25, 1180–1190.
Wyckhuys K A G, Wongtiem P, Rauf A, Thancharoen A, Heimpel G E, Le N T, Fanani M Z, Gurr G M, Lundgren J G, Burra D D, Palao L K, Hyman G, Graziosi I, Le V X, Cock M J, Tscharntke T, Wratten S D, Nguyen L V, You M, Lu Y H, et al. 2018. Continental-scale suppression of an invasive pest by a host-specific parasitoid heralds a new era for arthropod biological control. PeerJ, 6, e5796.
Xu P J, Zhang D D, Wang J, Wu K M, Wang X W, Wang X F, Ren G W. 2019. The host preference of Spodoptera frugiperda on maize and tobacco. Plant Protection, 45, 61–64. (in Chinese)
Xu Q X, Wang S, Tian R B, Wang S, Zhang F, Ma J, Li S, Di N. 2019. Study on the predation potential of Chrysopa pallens on Spodoptera frugipera. Journal of Environmental Entomology, 41, 754–759. (in Chinese)
Yoo H J S, O’Neil R J. 2009. Temporal relationships between the generalist predator, Orius insidiosus, and its two major prey in soybean. Biological Control, 48, 168–180.
Zanuncio J C, Silva C A D D, Lima E R D, Pereira F F, Ramalho F D S, Serrão J E. 2008. Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Brazilian Archives of Biology and Technology, 51, 121–125.
Zhang D D, Wu K M. 2019. The bioassay of Chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa) maize against the fall armyworm, Spodoptera frugiperda. Plant Protection, 45, 54–60. (in Chinese)
Zhao S Y, Sun X X, Zhang H W, Yang X M, Wu K M. 2019. Laboratory test on the control efficacy of common chemical insecticides against Spodoptera frugiperda. Plant Protection, 45, 10–14. (in Chinese)
Zhao Y J, Fu C Y, Xu T M, Zheng Y Q, Wang W Q, Kong D H, Chen B, Li Z Y. 2019. Predation functional response of Eurellia pallipes to the 2nd instar larvae of Spodoptera frugiperda. Plant Protection, 45, 28–34. (in Chinese)
Zhu K H, Zhou J C, Zhang Z T, Zhang C, Che W N, Zhang L S, Dong H. 2019. Parasitic efficacy and offspring fitness of Trichogramma pretiosum against Spodoptera frugiperda and Spodoptera litura at different egg ages. Plant Protection, 45, 54–59. (in Chinese)
[1] Jing WAN, HUANG Cong, LI Chang-you, ZHOU Hong-xu, REN Yong-lin, LI Zai-yuan, XING Long-sheng, ZHANG Bin, QIAO Xi, LIU Bo, LIU Cong-hui, XI Yu, LIU Wan-xue, WANG Wen-kai, QIAN Wan-qiang, Simon MCKIRDY, WAN Fang-hao . Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 646-663.
[2] ZHOU Xian-yong, WU Qiu-lin, JIA Hui-ru, WU Kong-ming. Searchlight trapping reveals seasonal cross-ocean migration of fall armyworm over the South China Sea[J]. >Journal of Integrative Agriculture, 2021, 20(3): 673-684.
[3] GE Shi-shuai, HE Li-mei, HE Wei, YAN Ran, Kris A. G. WYCKHUYS, WU Kong-ming . Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 707-714.
[4] HE Li-mei, JIANG Shan, CHEN Yu-chao, Kris A. G. WYCKHUYS, GE Shi-shuai, HE Wei, GAO Xi-wu, WU Kong-ming . Adult nutrition affects reproduction and flight performance of the invasive fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 715-726.
[5] GE Shi-shuai, HE Wei, HE Li-mei, YAN Ran, ZHANG Hao-wen, WU Kong-ming. Flight activity promotes reproductive processes in the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 727-735.
[6] HE Li-mei, WANG Teng-li, CHEN Yu-chao, GE Shi-shuai, Kris A. G. WYCKHUYS, WU Kong-ming. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 736-744.
[7] HE Li-mei, WU Qiu-lin, GAO Xi-wu, WU Kong-ming . Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 745-754.
No Suggested Reading articles found!