Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 105-117    DOI: 10.1016/j.jia.2025.04.012
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels

Mohan K. Bista1, Purushothaman Ramamoorthy2, Ranadheer Reddy Vennam1, Sadikshya Poudel1, K. Raja Reddy1, Raju Bheemanahalli1#

1 Department of Plant and Soil Sciences, Mississippi State University, MS 39762, USA

2 Geosystems Research Institute, Mississippi State University, MS 39762, USA

 Highlights 

Cotton cultivars are sensitive to abiotic stress during the vegetative stage.

Stresses and CO2 levels significantly influence the expression of physiology and phenotypic traits.

Elevated CO2 partially mitigated stress-induced damage to biomass under heat, salt, and drought.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Elevated CO2 (eCO2) may mitigate stress-induced damage to cotton (Gossypium spp.) growth and development.  However, understanding the early-stage responses of cotton to multiple abiotic stressors at eCO2 levels has been limited.  This study quantified the impacts of chilling (CS, 22/14°C, day/night temperature), heat (HS, 38/30°C), drought (DS, 50% irrigation of the control), and salt (SS, 8 dS m–1) stresses on pigments, physiology, growth, and development of 14 upland cotton cultivars under ambient CO2 (aCO2, 420 ppm; current) and eCO2 (700 ppm; future) levels during the vegetative stage.  The eCO2 partially negated the effects of all stresses by improving one or more of the pigments, physiological, growth, and development traits, except CS.  For instance, HS at aCO2 significantly increased stomatal conductance by 36% compared with non-stressed plants at aCO2.  However, HS at eCO2 significantly decreased stomatal conductance by 18% compared with HS at aCO2.  The first squaring was delayed by one day under SS at aCO2 but two days earlier under SS at eCO2 than non-stressed plants at aCO2.  Root and shoot dry mass and the total leaf area were significantly higher under all stresses, except for CS, at the eCO2 compared with similar stresses at the aCO2.  Most growth and development traits, including plant height, leaf area, and shoot dry mass, displayed a mirroring response pattern between aCO2 and eCO2 under all environments except CS.  Cultivars exhibited significant interaction with stressed environments.  Further, results revealed differential sensitivity and adaptation potential of cultivars to stress environments at varying CO2 levels.  This study highlights the need to consider eCO2 in designing breeding programs to develop stress-tolerant varieties for future cotton-growing environments.

Keywords:  abiotic stress       eCO2        cotton        vegetative vigor        multi-stress tolerance  
Received: 26 December 2024   Accepted: 03 March 2025 Online: 04 April 2025  
Fund: 

This study was supported by the Mississippi Agricultural and Forestry Experiment Station, Special Research Initiative (MAFES-SRI), USA, the USDA-Agricultural Research Service (USDA-ARS) (58-6064-3-007), and the National Institute of Food and Agriculture, USA (MIS-430030). 

About author:  #Correspondence Raju Bheemanahalli, E-mail: rajubr@pss.msstate.edu

Cite this article: 

Mohan K. Bista, Purushothaman Ramamoorthy, Ranadheer Reddy Vennam, Sadikshya Poudel, K. Raja Reddy, Raju Bheemanahalli. 2026. Impacts of abiotic stresses on cotton physiology and vigor under current and future CO2 levels. Journal of Integrative Agriculture, 25(1): 105-117.

AbdElgawad H, Zinta G, Hornbacher J, Papenbrock J, Markakis M N, Asard H, Beemster G T S. 2023. Elevated CO2 mitigates the impact of drought stress by upregulating glucosinolate metabolism in Arabidopsis thalianaPlant Cell& Environment46, 812–830.

Ahammed G J, Guang Y, Yang Y, Chen J. 2021. Mechanisms of elevated CO2-induced thermotolerance in plants: The role of phytohormones. Plant Cell Reports40, 2273–2286

Ainsworth E A, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell& Environment30, 258–270.

Arena C, Vitale L. 2018. Chilling-induced reduction of photosynthesis is mitigated by exposure to elevated CO2 concentrations. Photosynthetica56, 1259–1267.

Ashraf M. 2002. Salt tolerance of cotton: Some new advances. Critical Reviews in Plant Science21, 1–30.

Bange M P, Baker J T, Bauer P J, Broughton K J, Constable G A, Luo Q, Derrick M, Oosterhuis D M, Osanai Y, Payton P, Tissue D T, Reddy K R. 2016. Climate Change and Cotton Production in Modern Farming SystemsNo6. Commonwealth Agricultural Bureaux International.

Barickman T C, Adhikari B, Sehgal A, Walne C H, Reddy K R, Gao W. 2021a. Drought and elevated carbon dioxide impact the morphophysiological profile of basil (Ocimum basilicum L.). Crops1, 118–128.

Barickman T C, Adhikari B, Sehgal A, Walne C H, Reddy K R, Gao W. 2021b Drought and elevated CO2 impacts photosynthesis and biochemicals of basil (Ocimum basilicum L.). Stresses1, 223–237.

Bechere E, Auld D L, Smith C W, Cantrell R G, Hequet E F, Ritchie G L, Pabuayon I L B, Mishra D, Hendon B R, Brown N, Kelly B R. 2020. Registration of six upland cotton germplasm lines with improved fiber quality through ethyl methane sulfonate treatments and selection. Journal of Plant Registrations14, 159–164.

Bista M K, Adhikari B, Sankarapillai L V, Pieralisi B, Reddy K R, Jenkins J, Bheemanahalli R. 2024. Drought and heat stress induce differential physiological and agronomic trait responses in cotton. Industrial Crops and Products222, 119540.

Boese S R, Wolfe D W, Melkonian J J. 1997. Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell & Environment20, 625–632.

Bourland F M, Jones D C. 2018. Registration of ‘UA114’ cotton cultivar. Journal of Plant Registrations12, 181–185.

Broughton K J, Smith R A, Duursma R A, Tan D K, Payton P, Bange M P, Tissue D T. 2016. Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit. Functional Plant Biology44, 267–278.

Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L. 2018. Climate change and the impact of greenhouse gases: CO2 and NO, friends and foes of plant oxidative stress. Frontiers in Plant Science9, 273.

Chaudhry S, Sidhu G P S. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports41, 1–31.

Chavan S G, Duursma R A, Tausz M, Ghannoum O. 2019. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of Experimental Botany70, 6447–6459.

Fang D D, Jenkins J N, Deng D D, McCarty J C, Li P, Wu J. 2014. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics15, 1–15.

Fernandez G C J. 1992. Stress tolerance index - A new indicator of tolerance. HortScience27, 626d–626.

Geissler N, Hussin S, Koyro H W. 2010. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta231, 583–594.

Gupta S, Sankarapillai L V, Reddy K R, Stetina S R, Bheemanahalli R. 2023 Resilience of cotton cultivars to chilling stress during germination. Plant Physiology Reports28, 521–531.

Huang B, Xu Y. 2015. Cellular and molecular mechanisms for elevated CO2-regulation of plant growth and stress adaptation. Crop Science55, 1405–1424.

IPCC (Intergovernmental Panel of Climate Change). 2023. AR5 synthesis report. [2024-10-20]. https://www.ipcc.ch/report/ar5/syr/

Islam M S, Thyssen G N, Jenkins J N, Zeng L, Delhom C D, McCarty J C, Deng D D, Hinchliffe D J, Jones D C, Fang D D. 2016. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics17, 1–17.

Keeling. 2024. The Keeling curve. [2024-11-24]. https://keelingcurve.ucsd.edu/

Kloth R H, Turley R B. 2010. Physiology of seed and fiber development. In: Physiology of Cotton. Springer Netherlands, Dordrecht. pp. 111–122.

Kramer P J. 1980. The role of physiology in crop improvement. In: Linking Research to Crop Production. Springer, Boston, MA, US. pp. 51–62.

Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany60, 2859–2876.

Li A, Lv D, Zhang Y, Zhang D, Zong Y, Shi X, Li P, Hao X. 2024. Elevated CO2 concentration enhances drought resistance of soybean by regulating cell structure, cuticular wax synthesis, photosynthesis, and oxidative stress response. Plant Physiology and Biochemistry206, 108266.

Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology33, 524–530.

Liu S, Zuo D, Cheng H, He M, Wang Q, Lv L, Zhang Y, Ashraf J, Liu J, Sog G. 2023. Cotton pedigree genome reveals restriction of cultivar-driven strategy in cotton breeding. Genome Biology24, 282.

Lv D, Xing Q, Wang T, Song J, Duan R, Hao X, Zong Y, Zhang D, Shi X, Zhao Z. 2024. Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt–alkaline stress. Environmental and Experimental Botany228, 106000.

Ma Y, Wei Z, Liu J, Liu X, Liu F. 2021. Growth and physiological responses of cotton plants to salt stress. Journal of Agronomy and Crop Science207, 565–576.

Maryum Z, Luqman T, Nadeem S, Khan S M U D, Wang B, Ditta A, Khan M K R 2022. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science13, 907937.

Munawar W, Hameed A, Khan M K R. 2021. Differential morphophysiological and biochemical responses of cotton genotypes under various salinity stress levels during early growth stage. Frontiers in Plant Science12, 622309.

Narayana N K, Wijewardana C, Alsajri F A, Reddy K R, Stetina S R, Bheemanahalli R. 2024. Resilience of soybean genotypes to drought stress during the early vegetative stage. Scientific Reports14, 17365.

Nawaz M S, Sami S A, Bano M, Khan M R Q, Anwar Z, Ijaz A, Ahmed T. 2023. Impact of salt stress on cotton. International Journal of Agriculture and Biosciences12, 98–103.

Noreen S, Ahmad S, Fatima Z, Zakir I, Iqbal P, Nahar K, Hasanuzzaman M. 2020. Abiotic stresses mediated changes in morphophysiology of cotton plant. In: Cotton Production and Uses (Agronomy, Crop Protection, and Postharvest Technologies). Springer Netherlands, Dordrecht. pp. 341–366.

Olivoto T, Lúcio A D C. 2020. Metan: An R package for multi-environment trial analysis. Methods in Ecology Evolution11, 783–789.

Olivoto T, Lúcio A D C, da Silva J A G, Sari B G, Diel M I. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agronomy Journal111, 2961–2969.

Perez L M, Mauleon R, Arick M A, Magbanua Z V, Peterson D G, Dean J F D, Tseng T M. 2022. Transcriptome analysis of the 2,4-dichlorophenoxyacetic acid (2,4-D)-tolerant cotton chromosome substitution line CS-B15sh and its susceptible parental lines Ghirsutum L. cv. Texas Marker-1 and G. barbadense L. cv. Pima 379. Frontiers in Plant Science13, 910369.

Reddy A R, Reddy K R, Padjung R, Hodges H F. 1996. Nitrogen nutrition and photosynthesis in leaves of Pima cotton. Journal of Plant Nutrition19, 755–770.

Reddy K R, Hodges H F, Read J J, McKinion J M, Baker J T, Tarpley L, Reddy V R. 2001. Soil–Plant–Atmosphere–Research (SPAR) facility: A tool for plant research and modeling. Biotronics30, 27–50.

Saini D K, Impa S M, McCallister D, Patil G B, Abidi N, Ritchie G, Jaconis S Y, Jagadish K S V. 2023. High day and night temperatures impact on cotton yield and quality - Current status and future research direction. Journal of Cotton Research6, 16.

Dos Santos T B, Ribas A F, de Souza S G H, Budzinski I G F, Domingues D S. 2022. Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses2, 113–135.

Shreevani G N, Sreenivas A G, Beladhadi R V. 2022. Effect of elevated CO2 and temperature on phytochemistry of Bt cotton: Climate change perspective. The Pharma Innovation Journal11, 2196–2204.

Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. 2017. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology8, 578.

Vennam R R, Bheemanahalli R, Reddy K R, Dhillon J, Zhang X, Adeli A. 2024. Early-season maize responses to salt stress: Morpho-physiological, leaf reflectance, and mineral composition. Journal of Agriculture and Food Research15, 100994.

Virk G, Snider J L, Pilon C. 2020. Associations between first true leaf physiology and seedling vigor in cotton under different field conditions. Crop Science60, 404–418.

Wang Z, Wang C, Liu S. 2022. Elevated CO2 alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. Journal of Ecology110, 2836–2849.

Yoon S T, Hoogenboom G, Flitcroft I, Bannayan M. 2009. Growth and development of cotton (Gossypium hirsutum L.) in response to CO2 enrichment under two different temperature regimes. Environmental and Experimental Botany67, 178–187.

Yousaf M I, Hussain Q, Alwahibi M S, Aslam M Z, Khalid M Z, Hussain S, Zafar A, Shah S A S, Abbasi A M, Mehboob A. 2023. Impact of heat stress on agro-morphological, physio-chemical and fiber related parameters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University-Science35, 102379.

Zafar M M, Shakeel A, Haroon M, Manan A, Sahar A, Shoukat A, Mo H, Farooq M A, Renm M. 2022. Effects of salinity stress on some growth, physiological, and biochemical parameters in cotton (Gossypium hirsutum L.) germplasm. Journal of Natural Fibers19, 8854–8886.

Zhang H, Sonnewald U. 2017. Differences and commonalities of plant responses to single and combined stresses. The Plant Journal90, 839–855.

Zhang S, Fu W, Zhang Z, Fan Y, Liu T. 2017. Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves. Environmental and Experimental Botany133, 108–117.

Zhou Y H, Yu J Q, Mao W H, Huang L F, Song X S, Nogués S. 2006. Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant and Cell Physiology47, 192–199.

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Yanqing Wu, Jiao Liu, Lu Zhao, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. Abiotic stress responses in crop plants: A multi-scale approach[J]. >Journal of Integrative Agriculture, 2026, 25(1): 1-15.
[3] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[4] Qiushuang Yao, Huihan Wang, Ze Zhang, Shizhe Qin, Lulu Ma, Xiangyu Chen, Hongyu Wang, Lu Wang, Xin Lü. Estimation model of potassium content in cotton leaves based on hyperspectral information of multi-leaf position[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4225-4241.
[5] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[6] Wanting Yu, Yonglu Dai, Junmin Chen, Aimin Liang, Yiping Wu, Qingwei Suo, Zhong Chen, Xingying Yan, Chuannan Wang, Hanyan Lai, Fanlong Wang, Jingyi Zhang, Qinzhao Liu, Yi Wang, Yaohua Li, Lingfang Ran, Jie Xiang, Zhiwu Pei, Yuehua Xiao, Jianyan Zeng. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3311-3327.
[7] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[8] Min Xu, Zhao Gao, Dalong Li, Chen Zhang, Yuqi Zhang, Qian He, Yingbin Qi, He Zhang, Jingbin Jiang, Xiangyang Xu, Tingting Zhao.

Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17 [J]. >Journal of Integrative Agriculture, 2024, 23(1): 141-154.

[9] LI Zhi-qi, Xie Qian, YAN Jia-hui, CHEN Jian-qing, CHEN Qing-xi. Genome-wide identification and characterization of the abiotic-stress-responsive lipoxygenase gene family in diploid woodland strawberry (Fragaria vesca)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1982-1996.
[10] DU Qiao-li, FANG Yuan-peng, JIANG Jun-mei, CHEN Mei-qing, LI Xiang-yang, XIE Xin. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3540-3555.
[11] LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng. Response of leaf stomatal and mesophyll conductance to abiotic stress factors[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2787-2804.
[12] SHI Bei-bei, WANG Juan, GAO Hai-feng, ZHANG Xiao-juan, WANG Yang, MA Qing. The TaFIM1 gene mediates wheat resistance against Puccinia striiformis f. sp. tritici and responds to abiotic stress[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1849-1857.
[13] WANG Xi-cheng, WU Wei-min, ZHOU Bei-bei, WANG Zhuang-wei, QIAN Ya-ming, WANG Bo, YAN Li-chun. Genome-wide analysis of the SCPL gene family in grape (Vitis vinifera L.)[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2666-2679.
[14] MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(1): 46-54.
[15] QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1704-1720.
No Suggested Reading articles found!