Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (7): 1704-1720    DOI: 10.1016/S2095-3119(19)62761-9
Special Issue: 小麦遗传育种Wheat Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia1, JIANG Yu-jie1, LU Yun-ze1, 3, ZHAO Peng1, WU Bing-jin1, LI Hong-xia1, WANG Yu1, XU Sheng-bao1, SUN Qi-xin2, LIU Zhen-shan1
1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
2 Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, P.R.China
3 College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Keywords:  wheat        sugar transporter        abiotic stress        homoeologous gene        expression partitioning  
Received: 13 March 2019   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31601304 and 31601305), the Shaanxi Natural Science Foundation, China (2017JQ3023) and the Doctoral Scientific Research Foundation of Northwest A&F University, China (Z109021611 and Z109021612).
Corresponding Authors:  Correspondence LIU Zhen-shan, E-mail: zhenshanliu@nwafu.edu.cn   
About author:  QIN Jin-xia, E-mail: jinxiaqin2015@nwafu.edu.cn;

Cite this article: 

QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan. 2020. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 19(7): 1704-1720.

Adams K L, Wendel J F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8, 135–141.
Almodares A, Hadi M R, Ahmadpour H. 2008. Sorghum stem yield and soluble carbohydrates under different salinity levels. African Journal Biotechnology, 7, 4051–4055.
Anders S, Pyl P T, Huber W. 2015. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.
Chandran D. 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 67, 461–471.
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology, 23, 697–702.
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–534.
Chen L Q, Lin I W N, Qu X Q, Sosso D, McFarlane H E, Londono A, Samuels A L, Frommer W B. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. The Plant Cell, 27, 607–619.
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335, 207–211.
Cheng W H, Endo A, Zhou L, Penney J, Chen H C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 14, 2723–2743.
Clavijo B J, Venturini L, Schudoma C, Accinelli G G, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F H, McKenzie N, Raats D, Ramirez-Gonzalez R H, Coince A, Peel N, Percival-Alwyn L, Duncan O, et?al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27, 885–896.
Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866.
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. 2016. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170, 1460–1479.
Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology, 25, 53–62.
Feldman M, Levy A A, Fahima T, Korol A. 2012. Genomic asymmetry in allopolyploid plants: Wheat as a model. Journal of Experimental Botany, 63, 5045–5059.
Feng C Y, Han J X, Han X X, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 573, 261–272.
Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Jia B L, Xuan Y H. 2018a. Genome-wide identification of the SWEET gene family in wheat. Gene, 642, 284–292.
Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan D P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B, Xuan Y H. 2018b. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology, 19, 2149–2161.
Gaut B S. 2002. Evolutionary dynamics of grass genomes. New Phytologist, 154, 15–28.
Griffiths C A, Paul M J, Foyer C H. 2016. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochimica et Biophysica Acta-Bioenergetics, 1857, 1715–1725.
Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164, 777–789.
Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B. 2015. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 84, 694–703.
Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. 2016. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Frontiers in Plant Science, 7, 1464.
Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology, 58, 1442–1460.
Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell and Environment, 36, 1242–1255.
Kim D, Landmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.
Klemens P A W, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology, 163, 1338–1352.
Klemens P A W, Patzke K, Krapp A, Chardon F, Neuhaus H E. 2014. SWEET16 and SWEET17, two novel vacuolar sugar carriers with impact on cellular sugar homeostasis and plant traits. Biochemistry and Cell Biology, 92, 589–589.
Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608.
Kryvoruchko I S, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu C I, Guan D, Murray J, Benedito V A, Frommer W B, Udvardi M K. 2016. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiology, 171, 554–565.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Lackey J A. 1980. Chromosome numbers in the phaseoleae (Fabaceae:Faboideae) and their relation to taxonomy. American Journal of Botany, 67, 595–602.
Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.
Leon P, Sheen J. 2003. Sugar and hormone connections. Trends in Plant Science, 8, 110–116.
Li L, Sheen J. 2016. Dynamic and diverse sugar signaling. Current Opinion in Plant Biology, 33, 116–125.
Li P, Zhou H, Shi X, Yu B, Zhou Y, Chen S, Wang Y, Peng Y, Meyer R C, Smeekens S C, Teng S. 2014. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genetics, 10, e1004213.
Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508, 546–549.
Liu Q S, Yuan M, Zhou Y, Li X H, Xiao J H, Wang S P. 2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell and Environment, 34, 1958–1969.
Liu Z L, Adams K L. 2007. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Current Biology, 17, 1669–1674.
Liu Z S, Xin M M, Qin J X, Peng H R, Ni Z F, Yao Y Y, Sun Q X. 2015. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biology, 15, 152.
Ljung K, Nemhauser J L, Perata P. 2015. New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 25, 130–137.
Ma Y Y, Zhang Y L, Lu J, Shao H B. 2009. Roles of plant soluble sugars and their responses to plant cold stress. African Journal of Biotechnology, 8, 2004–2010.
Manck-Gotzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science, 7, 127.
Matsuoka Y. 2011. Evolution of polyploid Triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant and Cell Physiology, 52, 750–764.
Mizuno H, Kasuga S, Kawahigashi H. 2016. The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels, 9, 127.
Mizuno H, Kasuga S, Kawahigashi H. 2018. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum. BMC Plant Biology, 18, 2.
Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M Z, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 16, 520.
Van De Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411–424.
Porter K, Worrall W, Gardenhire J, Gilmore E, McDaniel M, Tuleen N. 1987. Registration of ‘TAM 107’ wheat. Crop Science, 27, 818–819.
Ramirez-Gonzalez R H, Borrill P, Lang D, Harrington S A, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson S J, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, et?al. 2018. The transcriptional landscape of polyploid wheat. Science, 361, doi: 10.1126/science.aar6089
Robinson M D, McCarthy D J, Smyth G K. 2010. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
Seo P J, Park J M, Kang S K, Kim S G, Park C M. 2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 233, 189–200.
Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115, 433–447.
Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 47, 1489–1493.
Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. 2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 61, 2807–2818.
Vogel J P, Garvin D F, Mockler T C, Schmutz J, Rokhsar D, Bevan M W, Barry K, Lucas S, Harmon-Smoth M, Lail K, Tice H, Grimwood J, McKenzie N, Huo N, Gu Y Q, Lazo G R, Anderson O D, You F M, Luo M C, Dvorak J, et?al. 2010. Genome sequencing and analysis of the model grass brachypodium distachyon. Nature, 463, 763–768.
Wang Y J, Deng D X, Shi Y T, Miao N, Bian Y L, Yin Z T. 2012. Diversification, phylogeny and evolution of auxin response factor (ARF) family: Insights gained from analyzing maize ARF genes. Molecular Biology Reports, 39, 2401–2415.
Wani S H. 2018. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. 1st ed. Academic Press, Elsevier Inc.
Xu S M, Liu L X, Woo K C, Wang D L. 2007. Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica, 45, 348–354.
Yang C W, Zhao L, Zhang H K, Yang Z Z, Wang H, Wen S S, Zhang C Y, Rustgi S, von Wettstein D, Liu B. 2014. Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 111, 11882–11887.
Yuan M, Zhao J W, Huang R Y, Li X H, Xiao J H, Wang S P. 2014. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. Journal of Integrative Plant Biology, 56, 559–570.
Zhang Y M, Liu Z S, Khan A, Lin Q, Han Y, Mu P, Liu Y G, Zhang H S, Li LY, Meng X H, Ni Z F, Xin M M. 2016. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Scientific Reports, 6, 21476.
Zhang Z C, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill B S, Rasmussen J B, Barbe V, Faris J D, Chalhoub B. 2011. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 108, 18737–18742.
 
[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
No Suggested Reading articles found!