|
Botton A, Ruperti B. 2019. The yes and no of the ethylene involvement in abscission. Plants, 8, 187.
Butenko M A, Patterson S E, Grini P E, Stenvik G, Amundsen S S, Mandal A, Aalen R B. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell, 15, 2296–2307.
Butenko M A, Stenvik G, Alm V, Sæther B, Patterson S E, Aalen R B. 2006. Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Journal of Experimental Botany, 57, 3627–3637.
Butenko M A, Wildhagen M, Albert M, Jehle A, Kalbacher H, Aalen R B, Felix G. 2014. Tools and strategies to match peptide-ligand receptor pairs. The Plant Cell, 26, 1838–1847.
Cheng L, Li R, Wang X, Ge S, Wang S, Liu X, He J, Jiang C, Qi M, Xu T. 2022. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. The Plant Cell, 34, 4388–4408.
Cho S K, Larue C T, Chevalier D, Wang H, Jinn T, Zhang S, Walker JC. 2008. Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 105, 15629–15634.
Cui Y, Lu X, Gou X. 2022. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. Plant Communications, 3, 100273.
Domingos S, Scafidi P, Cardoso V, Leitao AE, Di Lorenzo R, Oliveira C M, Goulao L F. 2015. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. Frontiers in Plant Science, 6, 457.
Estornell L H, Agustí J, Merelo P, Talón M, Tadeo F R. 2013. Elucidating mechanisms underlying organ abscission. Plant Science, 199–200, 48–60.
Estornell L H, Wildhagen M, Pérez-Amador M A, Talón M, Tadeo F R, Butenko M A. 2015. The IDA peptide controls abscission in Arabidopsis and Citrus. Frontiers in Plant Science, 6, 1003.
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi C, Meng S. 2024. Kinase CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. Plant Physiology, 196, 2014–2029.
Gou X, Li J. 2020. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiology, 182, 1667–1681.
Hohmann U, Lau K, Hothorn M. 2017. The structural basis of ligand perception and signal activation by receptor kinases. Annual Review of Plant Biology, 68, 109–137.
Jinn T, Stone J M, Walker J C. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development, 14, 108–117.
Kobe B, Kajava A V. 2001. The leucine-rich repeat as a protein recognition motif. Current Opinion in Structural Biology, 11, 725–732.
Li R, Shi C, Wang X, Meng Y, Cheng L, Jiang C, Qi M, Xu T, Li T. 2021. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiology, 186, 1288–1301.
Li X, Zhang J, Shi H, Li B, Li J. 2022. Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. Journal of Integrative Plant Biology, 64, 1303–1309.
Liu Y, Schiff M, Dinesh-Kumar S P. 2002. Virus-induced gene silencing in tomato. The Plant Journal, 31, 777–786.
Lu L, Arif S, Yu J M, Lee J W, Park Y H, Tucker M L, Kim J. 2023. Involvement of IDA-HAE module in natural development of tomato flower abscission. Plants, 12,185.
Meir S, Philosoph-Hadas S, Riov J, Tucker M L, Patterson S E, Roberts J A. 2019. Re-evaluation of the ethylene-dependent and -independent pathways in the regulation of floral and organ abscission. Journal of Experimental Botany, 70, 1461–1467.
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj K V, Burd S, Ophir R, Kochanek B, Reid M S, Jiang C, Lers A. 2010. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiology, 154, 1929–1956.
Ou Y, Kui H, Li J. 2021. Receptor-like kinases in root development: Current progress and future directions. Molecular Plant, 14, 166–185.
Patharkar O R, Walker J C. 2016. Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiology, 172, 510–520.
Rai A C, Halon E, Zemach H, Zviran T, Sisai I, Philosoph-Hadas S, Meir S, Cohen Y, Irihimovitch V. 2021. Characterization of two ethephon-induced IDA-like genes from mango, and elucidation of their involvement in regulating organ abscission. Genes, 12, 439.
Reichardt S, Piepho H, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. Science, 367, 1482–1485.
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn L A, Butenko M A, Hothorn M. 2016. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife, 5, e15075.
Shi C, Alling R M, Hammerstad M, Aalen R B. 2019. Control of organ abscission and other cell separation processes by evolutionary conserved peptide signaling. Plants, 8, 225.
Shi C, Stenvik G, Vie A K, Bones A M, Pautot V, Proveniers M, Aalen R B, Butenko M A. 2011. Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. The Plant Cell, 23, 2553–2567.
Shiu S, Bleecker A B. 2001. Plant receptor-like kinase gene family: Diversity, function, and signaling. Science’s STKE, 2001, re22.
Stenvik G, Tandstad N M, Guo Y, Shi C, Kristiansen W, Holmgren A, Clark S E, Aalen R B, Butenko M A. 2008. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. The Plant Cell, 20, 1805–1817.
Stø I M, Orr R J, Fooyontphanich K, Jin X, Knutsen J M, Fischer U, Tranbarger T J, Nordal I, Aalen R B. 2015. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: Withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science, 6, 931.
Taylor J E, Whitelaw C A. 2001. Signals in abscission. New Phytologist, 151, 323–340.
Tucker M L, Yang R. 2012. IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. AoB Plants, 2012, pls35.
Ventimilla D, Velázquez K, Ruiz-Ruiz S, Terol J, Pérez-Amador M A, Vives M C, Guerri J, Talon M, Tadeo F R. 2021. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC Plant Biology, 21, 226.
Vie A K, Najafi J, Liu B, Winge P, Butenko M A, Hornslien K S, Kumpf R, Aalen R B, Bones A M, Brembu T. 2015. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: Phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. Journal of Experimental Botany, 66, 5351–5365.
Wang F, Zheng Z, Yuan Y, Li J, Zhao M. 2019. Identification and characterization of HAESA-like genes involved in the fruitlet abscission in litchi. International Journal of Molecular Sciences, 20, 5945.
Wang Y, Wu Y, Zhang H, Wang P, Xia Y. 2022. Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity. Plant Physiology, 190, 206–210.
Wilmowicz E, Kućko A, Ostrowski M, Panek K. 2018. INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Growth Regulation, 85, 91–100.
Wilson Z A, Song J, Taylor B, Yang C. 2011. The final split: The regulation of anther dehiscence. Journal of Experimental Botany, 62, 1633–1649.
Zhu H, Dardick C D, Beers E P, Callanhan A M, Xia R, Yuan R. 2011. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biology, 11, 1–20.
Zhu Q, Shao Y, Ge S, Zhang M, Zhang T, Hu X, Liu Y, Walker J, Zhang S, Xu J. 2019. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Nature Plants, 5, 414–423.
|