Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 92-104    DOI: 10.1016/j.jia.2024.03.046
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes

Qinghao Wang1*, Juan Hu1*, Weizhen Yu1*, Limin Gu2, Peng Liu1, Bin Zhao1, Wenchao Zhen3#, Jiwang Zhang1#, Baizhao Ren1#

1 College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
2 College of Agronomy, Hebei Agricultural University, Baoding 071001, China
3 State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
 Highlights 
Shading, waterlogging, and their combination reduced leaf photosynthetic assimilation and inhibited lignin biosynthesis.
Under shading, waterlogging, and their combination, stem vascular system was disrupted, reducing the remobilization capacity of dry matter to the ear.
Impact of waterlogging and combined stress occurred at the third leaf growth stage, while shading had the greatest impact at tasseling growth stage.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
持续阴雨是夏玉米生产中的一个重要限制因素,对其直接影响是淹水和遮荫的双重压力。然而,关于淹水和遮荫引起玉米产量损失的独立和联合效应的机理研究很少,特别是在不同生育阶段。选用登海605(DH605)在三叶期(V3)、六叶期(V6)和抽雄期(VT)进行遮荫、淹水及其复合胁迫处理。结果表明,遮荫、淹水及其复合胁迫显著限制了叶面积的扩展,降低了叶片净光合速率(Pn)和净同化速率(NAR) ,从而降低了作物生长速率(CGR)和生物量积累。同时,与对照相比,胁迫处理抑制了木质素合成过程,导致茎秆机械强度降低,维管系统发育不良,显著降低同化物对穗部的再运转效率,最终影响籽粒产量。淹水和复合胁迫对产量的影响在V3时期最显著,其次是 V6时期和 VT 时期。遮荫胁迫最显著的影响发生在 VT 时期,其次是 V6和 V3时期。此外,复合胁迫加剧了单一胁迫引起的损失。预测气候变化将增加非生物胁迫组合的频率,这些结果为今后夏玉米在持续降雨条件下的育种研究提供了一定的指导。


Abstract  

Persistent overcast rain was an essential limiting factor for summer maize production, of which immediate impact was the dual pressure of waterlogging and shading.  However, the mechanisms underlying independent and combined effects of waterlogging and shading on maize yield losses remain understudied, particularly across different growth stages.  Denghai 605 (DH605) was selected to be subjected shading, waterlogging, and their combined stress at the 3rd leaf stage (V3), the 6th leaf stage (V6), and tasseling stage (VT).  Results showed that shading, waterlogging and their combination significantly restricted leaf area expansion, reduced leaf net photosynthetic rate (Pn) and net assimilation rate (NAR), thereby decreasing the crop growth rate (CGR) and biomass accumulation.  Additionally, compared to control, the process of lignin synthesis was inhibited under stressed treatment, resulting in diminished stem mechanical strength and impaired vascular system development, which substantially reduced assimilate remobilization efficiency to the ear and ultimate grain yield.  Waterlogging and combined stresses exhibited maximum impact at the V3 stage, followed by V6 and VT stages, while shading effects were most pronounced at the VT stage, followed by V6 and V3 stages.  Moreover, the compound stress exacerbated the damage brought about by a single stress.  As climate change is projected to increase the frequency of multiple abiotic stress occurrences, these findings provide valuable insights for future summer maize breeding research under persistent rainfall conditions.

Keywords:  maize        abiotic stress combination        photosynthetic capacity        stem development        yield  
Received: 31 December 2023   Accepted: 04 February 2024 Online: 13 March 2024  
Fund: This study was supported by the University Youth Innovation Science and Technology Support Program of Shandong Province, China (2021KJ073), the Postdoctoral Innovation Program of Shandong Province, China (202003039), the China Agriculture Research System (CARS-02-21), the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2023KF-8), and the Key R&D Program of Shandong Province, China (2023TZXD08603).
About author:  Qinghao Wang, E-mail: 1006231649@qq.com; #Correspondence Baizhao Ren, E-mail: renbaizhao@sina.com; Jiwang Zhang, E-mail: jwzhang@sdau.edu.cn; Wenchao Zhen, E-mail: wenchao@hebau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. 2026. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes. Journal of Integrative Agriculture, 25(1): 92-104.

Andrade F, Vega C, Uhart S, Cirilo A, Cantarero M, Valentinuz O. 1999. Kernel number determination in maize. Crop Science39, 453–459.

Anee T, Nahar K, Rahman A, Mahmud J, Bhuiyan T, Alam M, Fujita M, Hasanuzzaman M. 2019. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants8, 196.

Ashraf M. 2012. Waterlogging stress in plants: A review. African Journal of Agricultural Research7, 1976–1981.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology54, 519–546.

Chen Y, Chen X, Wang H, Bao Y, Zhang W. 2014. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Science12, 33.

Cheng J, Shen Y. 2010. My humble opinions on high photosynthetic efficiency of crop. Acta Agronomica Sinica36, 1235–1247. (in Chinese)

Cui A, Zhang J, Zhang H, Shan H, Chen W. 2020. Preliminary exploration on current situation and development of maize production in China. Journal of Agricultural Science and Technology22, 10–19.

Cui H, Ji L, Li B, Zhang J, Dong S, Liu P. 2012. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Scientia Agricultura Sinica45, 3497–3505. (in Chinese)

Cui H, Jin L, Li B, Dong S, Liu P, Zhao B, Zhang J. 2014. Effects of shading on endogenous hormones regulation in kernel development of summer maize in the field. Chinese Journal of Applied Ecology25, 1373–1379. (in Chinese)

Damatta F, Cunha R, Antunes W, Martins S, Araújo W, Fernie A, Moraes G. 2008. In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. The New Phytologist178, 348–357.

Ding L, Wang K, Jiang G, Liu M, Niu S, Gao L. 2005. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research93, 108–115.

Dong H, Li H, Li A, Yan X. 2010. Relationships between spike and stem growth and female spike differentiation under different densities. Maize Science18, 65–71, 75. (in Chinese)

Du C, Li C, Liu T, Zhao Y. 2011. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecologica Sinica31, 6633–6640. (in Chinese)

Eudes A, Liang Y, Mitra P, Loqué D. 2014. Lignin bioengineering. Current Opinion in Biotechnology26, 189–198.

Fan P, Li L, Duan W, Li W, Li S. 2010. Photosynthesis of young apple trees in response to low sink demand under different air temperatures. Tree Physiology30, 313–325.

Feng G, Liu Z, Wu Y, Li Y, Huang C. 2010. Primary study on correlation between corn variety lodging resistances and its stem puncture-pull strength. Crop Science18, 19–23.

Franck N, Vaast P, Génard M, Dauzat J. 2006. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabicaTree Physiology26, 517–525.

Gallo K, Daughtry C, Wiegand C. 1993. Errors in measuring absorbed radiation and computing crop radiation use efficiency. Agronomy Journal85, 1222–1228.

Gao J, Cui H, Shi J, Dong S, Liu P, Zhao B, Zhang J. 2018. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L.). Chinese Journal of Applied Ecology29, 883–890. (in Chinese)

Gao J, Shi J, Dong S, Liu P, Zhao B, Zhang J. 2017. Grain yield and root characteristics of summer maize (Zea mays L.) under shade stress conditions. Journal of Agronomy and Crop Science203, 562–573.

Ghosh P. 2004. Growth, yield, competition and economics of groundnut/cerealfodder intercropping systems in the semi-arid tropics of India. Field Crops Research88, 227–237.

Hou P, Liu Y, Liu W, Liu G, Xie R, Wang K, Ming B, Wang Y, Zhao R, Zhang W, Wang Y, Bian S, Ren H, Zhao X, Liu P, Chang J, Zhang G, Liu J, Yuan L, Zhao H, et al. 2020. How to increase maize production without extra nitrogen input. Resources Conservation and Recycling160, 104913.

Housley T, Peterson D. 1982. Oat stem vascular size in relation to kernel number and weight. I. Controlled environment. Crop Science22, 259–263.

Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. 2021. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop Journal10, 478–489.

Hussain S, Iqbal N, Pang T, Naeem M, Liu W, Yang W. 2019. Weak stem under shade reveals the lignin reduction behavior. Journal of Integrative Agriculture18, 496–505.

IPCC. 2023. AR6 Synthesis Report: Climate Change 2023. [2023-10-20]. https://www.ipcc.ch/report/sixth-assessment-report-cycle/

Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. 2009. Physiological and biochemical changes in plants under waterlogging. Protoplasma241, 3–17.

Jia S, Li C, Dong S, Zhang J. 2010. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chinese Journal of Plant Ecology34, 1439–1447. (in Chinese)

Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, Yadav I S. 2021. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Science304, 110823.

Keuskamp D, Sasidharan, Pierik R. 2010. Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signaling & Behavior5, 655–662.

Koyama K, Ikeda H, Poudel P, Goto-Yamamoto N. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry78, 54–64.

Li C, Jia C, Tao Z, Yang J, Liu J, Zhao M. 2019. Effects of waterlogging at jointing stage on grain yield, plant morphology and dry matter production in different plant height of summer maize. Maize Science27, 62–67. (in Chinese)

Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C. 2009. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Molecular Biology69, 685–697.

Liang X, Gao Z, Zhang L, Shen S, Zhao X, Liu Y, Zhou L, Pual M, Zhou S. 2019. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC Plant Biology19, 508.

Liu S, Xing J, Zhao B, Wang J, Wang S, Zhang X, Ding A. 2019. Understanding of aerosol–climate interactions in China: Aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios. Current Pollution Reports5, 36–51.

Liu W, Hussain S, Liu T, Zou J, Ren M, Zhou T, Liu J, Yang F, Yang W. 2019. Shade stress decreases stem strength of soybean through restraining lignin biosynthesis. Journal of Integrative Agriculture18, 43–53.

Liu X, Gu W, Li C, Li J, Wei S. 2021. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. Journal of Integrative Agriculture20, 511–526.

Liu X, Yong T, Su B, Liu W, Zhou L, Song C, Yang F, Wang X, Yang W. 2014. Effect of reduced N application on crop yield in maize–soybean intercropping system. Acta Agronomica Sinica40, 1629–1638. (in Chinese)

Martín M, Russell W. 1984. Correlated responses of yield and other agronomic traits to recurrent selection for stalk quality in a maize synthetic. Crop Science24, 746–750.

Mason T, Maskell E. 1928. Studies on the transport of carbohydrates in the cotton plantii. the factors determining the rate and the direction of movement of sugars. Annals of Botany42, 571–636.

Moreira-Vilar F, Siqueira-Soares R, Finger-Teixeira A, Oliveira D, Ferro A, Rocha G, Ferrarese M, dos Santos W D, Ferrarese-Filho O. 2014. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS ONE9, e110000.

Najeeb U, Bange M, Atwell B, Tan D. 2016. Low incident light combined with partial waterlogging impairs photosynthesis and imposes a yield penalty in cotton. Journal of Agronomy and Crop Science202, 331–341.

Nguyen N, Son S, Jordan M, Levin D, Ayele B. 2016. Lignin biosynthesis in wheat (Triticum aestivum L.): Its response to waterlogging and association with hormonal levels. BMC Plant Biology16, 28.

Pan J, Sharif R, Xu X, Chen X. 2021. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science11, 627331.

Pan Y, Lu Z, Lu J, Li X, Cong R, Ren T. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiology and Biochemistry113, 110–121.

Rahayuningsih S, Indradewa D, Sulistyaningsih E, Maas A. 2017. The tolerance of photosynthesis of summer maize cultivars (Zea mays L.) to waterlogging at different stages of growth. International Journal of Advances in Engineering Sciences and Applied Mathematics7, 1296–1301.

Ren B, Hu J, Zhang J, Dong S, Liu P, Zhao B. 2020. Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays L.) waterlogged in the field. Journal of Integrative Agriculture19, 1586–1595.

Ren B, Zhang J, Dong S, Liu P, Zhao B. 2018. Responses of carbon metabolism and antioxidant system of summer maize to waterlogging at different stages. Journal of Agronomy and Crop Science204, 505–514.

Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B. 2013. Effects of waterlogging on stem lodging resistance of summer maize under field conditions. Scientia Agricultura Sinica46, 2440–2448. (in Chinese)

Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B. 2014. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science94, 23–31.

Rogers L, Dubos C, Cullis I, Surman C, Poole M, Willment J, Mansfield S, Campbell M. 2005. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany56, 1651–1663.

Sekhon R, Joyner C, Ackerman A, McMahan C, Cook D, Robertson D. 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research249, 107737.

Setter T, Waters I, Sharma S, Singh K, Kulshreshtha N, Yaduvanshi N, Ram P, Singh B, Rane J, McDonald G, Khabaz-Saberi H, Biddulph T, Wilson R, Barclay I, McLean R, Cakir M. 2009. Review of wheat improvement for waterlogging tolerance in Australia and India: The importance of anaerobiosis and element toxicities associated with different soils. Annals of Botany103, 221–235.

Shabala S. 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. The New Phytologist190, 289–298.

Shi Q, Kong F, Zhang H, Jiang Y, Heng S, Liang R, Liu J, Lu X, Li P, Li G. 2018. Molecular mechanisms governing shade responses in maize. Biochemical and Biophysical Research Communications516, 112–119.

Sowiński P. 1999. Transport of photoassimilates in plants under unfavourable environmental conditions. Acta Physiologiae Plantarum21, 75–85.

Tian L, Bi W, Ren X, Li W, Sun L, Li J. 2020. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.) than waterlogging in Northeast China. European Journal of Agronomy117, 126054.

Tian L, Zhang Y, Chen P, Zhang F, Li J, Yan F, Dong Y, Feng B. 2021. How does the waterlogging regime affect crop yield? A global meta-analysis. Frontiers in Plant Science12, 634898.

Vanholme R, Storme V, Vanholme B, Sundin L, Christensen J, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W. 2012. A systems biology view of responses to lignin biosynthesis perturbations in ArabidopsisPlant Cell24, 3506–3529.

Wang C, Ruan R, Yuan X, Hu D, Yang H, Li Y, Yi Z. 2014. Relationship between lignin metabolism and lodging resistance of culm in buckwheat. The Journal of Agricultural Science6, 29.

Wang Q, Zhao X, Liu D, Yan Z, Li H, Dong P, Li C. 2020. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica53, 3479–3495. (in Chinese)

Wu H, Qiao M, Zhang W, Wang K, Li S, Jiang C. 2022. Systemic regulation of photosynthetic function in maize plants at graining stage under a vertically heterogeneous light environment. Journal of Integrative Agriculture21, 666–676.

Wu L, Zhang W, Ding Y, Zhang J, Cambula E, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S, Li G. 2017. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Frontiers in Plant Science8, 881.

Xu C, Zhang P, Wang Y, Luo N, Tian B, Liu X, Wang P, Huang S. 2022. Grain yield and grain moisture associations with leaf, stem and root characteristics in maize. Journal of Integrative Agriculture21, 1941–1951.

Xu H, Wang Z, Xiao F, Yang L, Li G, Ding Y, Paul M J, Li W, Liu Z. 2020. Dynamics of dry matter accumulation in internodes indicates source and sink relations during grain-filling stage of japonica rice. Field Crops Research263, 108009.

Xue J, Gao S, Fan Y, Li L, Ming B, Wang K, Xie R, Hou P, Li S. 2020. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy117, 126073.

Zandalinas S, Balfagón D, Gómez-Cádenas A, Mittler R. 2022. Responses of plants to climate change: Metabolic changes during abiotic stress combination in plants. Journal of Experimental Botany73, 3339–3354.

Zhang B, Zhao M, Dong Z, Li J, Chen C, Sun R. 2007. Establishment and test of LAI dynamic Simulation model for high yield population. Acta Agronomica Sinica4, 612–619. (in Chinese)

Zhang J, Dong S, Wang K, Hu C, Liu P. 2007. Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agronomica Sinica33, 216–222. (in Chinese)

Zhang J, Li G, Song Y, Liu Z, Yang C, Tang S, Zheng C, Wang S, Ding Y. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research161, 64–74.

Zhang W, Fu X, Peng L, Ling L, Cao L, Ma X, Xie F, Li C. 2013. Effects of sink demand and nutrient status on leaf photosynthesis of spring-cycle shoot in ‘Newhall’ navel orange under natural field conditions. Scientia Horticulturae150, 80–85.

Zhao J, Wang S, Li M, Lu H, Wang D, Wei X, Yang W. 2018. Current status and perspective of maize breeding. Journal of Plant Genetic Resources19, 435–446. (in Chinese)

Zhou W, Wang X, Mu X, Li C. 2013. Effects of low-light stress on male and female flower development and pollin-ation and fructification ability of different maize (Zea mays L.) genotypes. Acta Agronomica Sinica39, 2065–2073. (in Chinese)

Zuber M, Grogan C. 1961. A new technique for measuring stalk strength in corn. Crop Science1, 378–380.

[1] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[2] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[3] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[4] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[5] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[6] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[7] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[8] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[9] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[10] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[11] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[12] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[13] Jienan Han, Ran Li, Ze Zhang, Shiyuan Liu, Qianqian Liu, Zhennan Xu, Zhiqiang Zhou, Xin Lu, Xiaochuan Shangguan, Tingfang Zhou, Jianfeng Weng, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jingyu Xu, Mingshun Li, Xinhai Li. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4496-4514.
[14] Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li. Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4546-4560.
[15] Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4573-4587.
No Suggested Reading articles found!