Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3494-3510    DOI: 10.1016/j.jia.2024.07.048
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4

Jing Zhou*, Bingshuai Du*, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang#

State Key Laboratory of Efficient Production of Forest Resources/Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
 Highlights 
● CoSUT4 is a sucrose transporter abundantly transcribed in the early developmental seeds and localized on the plasma membrane.
● CoSUT4 plays a dual role in regulating sugar transport and yield formation, as well as in enhancing abiotic stress tolerance by modulating sugar content.
CoSUT4 functions at nucellar projection and transfer cells, facilitating sucrose import from the maternal to filial tissue.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
蔗糖转运体家族(SUTs)在植物源叶到库端的碳分配中起着至关重要的作用,不同亚家族成员行使的功能各不相同。油茶中SUT超家族的全基因组鉴定还缺乏研究,其生物学功能尚不明确。本研究通过全基因组分析在油茶中共鉴定出4个SUT基因,将其命名为CoSUT1-4并划分为3个亚家族。研究进一步通过顺式作用元件分析、mRNA定量分析、原位杂交和异源转化相结合的方法验证了这些SUTs基因的表达谱和生物学功能。在本研究中发现,定位于质膜上的CoSUT4在油茶成熟叶片和种子发育早期特异性高表达。在离体培养的油茶种子中,CoSUT4对ABA和GA等多种外源激素具有响应。CoSUT4能够恢复酵母菌株SUSY7/ura3(蔗糖转运功能缺陷突变体)在含蔗糖培养基上的生长,并在CoSUT4基因过表达的愈伤组织中促进了蔗糖转运和组织生长。原位杂交实验证明CoSUT4在油茶种子子代与母代交界处(合点端珠心和转移细胞层)介导蔗糖的转运。CoSUT4在拟南芥atsuc4突变体中的过表达恢复了突变体的生长和产量缺陷,促进种子发育和含油量的增加。此外,CoSUT4基因的过表达增强了植物对于干旱和盐胁迫的耐受性。总之,本研究为解析油茶SUTs基因的功能提供了有价值的见解,并为通过遗传手段增强油茶种子产量提供了有潜力的候选基因。


Abstract  

Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors, and they also play key roles in both plant physiology and human health.  MYB transcription factors are crucial regulators of anthocyanin biosynthesis and accumulation, but the functional differences of homologous MYB transcription factors in regulating anthocyanin content are still unclear.  In strawberry (Fragaria×ananassa), FaMYB44.1 and FaMYB44.3 are highly homologous MYB transcription factors localized in the nucleus and can be significantly induced by weak light.  However, they differ in their effects on anthocyanin accumulation in the fruits.  FaMYB44.1 inhibits anthocyanin synthesis by transcriptionally suppressing FaF3H, which is essential for anthocyanin regulation, in the ‘BeniHoppe’ and ‘JianDe-Hong’ strawberry varieties.  In contrast, FaMYB44.3 does not affect anthocyanin levels.  This study provides a comprehensive overview of the roles of FaMYB44.1 and FaMYB44.3 in anthocyanin regulation in strawberry fruits.  By elucidating the molecular mechanisms underlying their regulation, this study enhances our understanding of how the interactions between genetic and environmental factors control fruit pigmentation and enhance the nutritional value of the fruit.

Keywords:  Camellia oleifera       sucrose transporter        genome-wide analysis        sugar accumulation        abiotic stress  
Received: 23 May 2024   Online: 31 July 2024   Accepted: 28 June 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32071798) and 5·5 Engineering Research & Innovation Team Project of Beijing Forestry University, China (BLRC2023B08).
About author:  Jing Zhou, E-mail: zhoujin.1234@163.com; Bingshuai Du, E-mail: dubingshuai624@163.com; #Correspondence Lingyun Zhang, Tel: +86-10-62336044, Fax: +86-10-62338197, E-mail: lyzhang@bjfu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. 2025. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4. Journal of Integrative Agriculture, 24(9): 3494-3510.

An J P, Li H H, Song LQ, Su L, Liu X, You C X, Wang X F, Hao Y J. 2016. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry10824–31.

An J P, Wang X F, Zhang X W, You C X, Hao Y J. 2021. Apple BT2 protein negatively regulates jasmonic acid-triggered leaf senescence by modulating the stability of MYC2 and JAZ2. PlantCell & Environment44, 216–233.

Baker R F, Leach K A, Boyer N R, Swyers M J, Benitez-Alfonso Y, Skopelitis T, Luo A, Sylvester A, Jackson D, Braun D M. 2016. Sucrose transporter ZmSUT1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiology, 172, 1876–1898.

Barth I, Meyer S, Sauer N. 2003. PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago majorPlant Cell15, 1375–1385.

Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J. 2008. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell20, 1346–1362.

Bihmidine S, Hunter C T, Johns C E, Koch K E, Braun D M. 2013. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Frontiers in Plant Science4, 177.

Braun D M. 2022. Phloem loading and unloading of sucrose: What a long, strange trip from source to sink. Annual Review of Plant Biology73, 553–584.

Buttner M. 2010. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biology12(Suppl. 1), 35–41.

Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R. 2005. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. Journal of Biological Chemistry280, 21437–21443.

Chandran D, Reinders A, Ward J M. 2003. Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2. Journal of Biological Chemistry278, 44320–44325

Cheng J T, Wen S Y, Xiao S, Lu B Y, Ma M R, Bie Z L. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany69, 511–523.

Chincinska I, Gier K, Krügel U, Liesche J, He H, Grimm B, Harren F, Cristescu S M, Kühn C. 2013. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Frontiers in Plant Science4, 26.

Chincinska I A, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C. 2008. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiology146, 515–528.

Dhungana S R, Braun D M. 2021. Sugar transporters in grasses: Function and modulation in source and storage tissues. Journal of Plant Physiology266, 153541.

Dominguez P G, Niittyla T. 2022. Mobile forms of carbon in trees: metabolism and transport. Tree Physiology42, 458–487.

Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. 2018. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta247, 587–611.

Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt U G. 2006. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology141, 196–207.

Feas X, Estevinho L M, Salinero C, Vela P, Sainz M J, Vazquez-Tato M P, Seijas J A. 2013. Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleiferaC. reticulata and C. sasanqua oils. Molecules18, 4573–4587.

Frost C J, Nyamdari B, Tsai C J, Harding S A. 2012. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PLoS One7, e44467.

Gong X, Liu M, Zhang L, Ruan Y, Ding R, Ji Y, Zhang N, Zhang S, Farmer J, Wang C. 2015. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiologia Plantarum153, 119–136.

Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. 2000. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proceedings of the National Academy of Sciences of the United States of America97, 13979–13984.

Hackel A, Schauer N, Carrari F, Fernie A R, Grimm B, Kuhn C. 2006. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant Journal45, 180–192.

Xu H F, Qu C Z, Liu J X, Wang Y C, Wang D Y, Zuo W F, Jiang S H, Wang N, Zhang Z Y, Chen X S. 2017. Expression analysis and functional identification of a vacuolar sucrose transporter gene MdSUT4 in apple. Acta Horticulturae Sinica44, 1235–1243. (in Chinese)

Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. 2021. Rice SUT and SWEET transporters. International Journal of Molecular Sciences22, 11198.

Javelle M, Timmermans M C. 2012. In situ localization of small RNAs in plants by using LNA probes. Nature Protocol7, 533–541.

Jia W Q, Zhang L J, Wu D, Liu S, Gong X, Cui Z H, Cui N, Cao H Y, Rao L B, Wang C. 2015. Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in Arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation. Plant & Cell Physiology, 56, 1574–1587.

Jiang M, Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant & Cell Physiology42, 1265–1273.

Kariya K, Sameeullah M, Sasaki T, Yamamoto Y. 2017. Overexpression of the sucrose transporter gene NtSUT1 alleviates aluminum-induced inhibition of root elongation in tobacco (Nicotiana tabacum L.). Soil Science and Plant Nutrition63, 45–54.

Leach K A, Tran T M, Slewinski T L, Meeley R B, Braun D M. 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology59, 390–408.

Li M Z, Wang G P, Wu Y, Ren Y, Li G H, Liu Z H, Ding Y F, Chen L. 2020. Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice. Chinese Journal of Rice Science34, 8.

Liang Y, Bai J, Xie Z, Lian Z, Guo J, Zhao F, Liang Y, Huo H, Gong H. 2023. Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis. Plant Physiology192, 1080–1098.

Lin P, Wang K L, Wang Y P, Hu Z K, Yan C, Huang H, Ma X J, Cao Y Q, Long W, Liu W X, Li X L, Fan Z Q, Li J Y, Ye N, Ren H D, Yao X H, Yin H F. 2022. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology23, 14.

Lu M, Snyder R, Grant J, Tegeder M. 2020. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. Plant Journal101, 217–236.

Luo D, Xiong C, Lin A, Zhang C, Sun W, Zhang J, Yang C, Lu Y, Li H, Ye Z, He P, Wang T. 2021. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. Horticulture Research8, 163.

Ma Q J, Sun M H, Liu Y J, Lu J, Hu D G, Hao Y J. 2016. Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2Plant Physiology and Biochemistry109, 442–451.

Meyer S, Melzer M, Truernit E, Hümmer C, Besenbeck R, Stadler R, Sauer N. 2000. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant Journal24, 869–882.

Milne R J, Grof C P, Patrick J W. 2018. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Current Opinion in Plant Biology43, 8–15.

Nebolisa N M, Umeyor C E, Ekpunobi U E, Umeyor I C, Okoye F B. 2023. Profiling the effects of microwave-assisted and soxhlet extraction techniques on the physicochemical attributes of Moringa oleifera seed oil and proteins. Oil Crop Science, 8, 16–26.

Patrick J W. 1997. Phloem unloading: Sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology48, 191–222.

Payyavula R S, Tay K H C, Tsai C J, Harding S A. 2011. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant Journal65, 757–770.

Pegler J L, Grof C P, Patrick J W. 2023. Sugar loading of crop seeds - a partnership of phloem, plasmodesmal and membrane transport. New Phytologist239, 1584–1602.

Peng Q, Cai Y, Lai E, Nakamura M, Liao L, Zheng B, Ogutu C, Cherono S, Han Y. 2020. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology20, 191.

Pugh D A, Offler C E, Talbot M J, Ruan Y L. 2010. Evidence for the role of transfer cells in the evolutionary increase in seed and fiber biomass yield in cotton. Molecular Plant3, 1075–1086

Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiss H H, Sreenivasulu N, Weschke W, Weber H. 2017. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. Journal of Experimental Botany68, 4595–4612.

Raghavendra A S, Gonugunta V K, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science15, 395–401.

Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier M H Jr. 2012. The major facilitator superfamily (MFS) revisited. FEBS Journal279, 2022–2035.

Reinders A, Sivitz A B, Starker C G, Gantt J S, Ward J M. 2008. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicusPlant Molecular Biology68, 289–299.

Ruan Y L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology65, 33–67.

Ruan Y L. 2022. CWIN-sugar transporter nexus is a key component for reproductive success. Journal of Plant Physiology268, 153572.

Ruan Y L, Llewellyn D J, Furbank R T. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell13, 47–60.

Sauer N. 2007. Molecular physiology of higher plant sucrose transporters. FEBS Letters581, 2309–2317.

Shah S T, Pang C, Fan S, Song M, Arain S, Yu S. 2013. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene531, 220–234.

Shen S, Ma S, Chen X M, Yi F, Li B B, Liang X G, Liao S J, Gao L H, Zhou S L, Ruan Y L. 2022. A transcriptional landscape underlying sugar import for grain set in maize. Plant Journal110, 228–242.

Singh J, Thakur J K. 2018. Photosynthesis and abiotic stress in plants. In: S Vats, ed. Biotic and Abiotic Stress Tolerance in Plants; Springer: Cham, Switzerland. pp. 27–46.

Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics47, 1489–1493.

Srivastava A C, Ganesan S, Ismail I O, Ayre B G. 2008. Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiology148, 200–211.

Sussmilch F C, Atallah N M, Brodribb T J, Banks J A, Mcadam S A M. 2017. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time. Plant Signaling & Behavior12, e1365210.

Thorne J H. 1985. Phloem unloading of C and N assimilates in developing seeds. Annual Review of Plant Physiology36, 317–343.

Wang D, Liu H, Wang H, Zhang P, Shi C. 2020. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in sweetpotato. BMC Plant Biology20, 157.

Wang L, Lu Q, Wen X, Lu C. 2015. Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiology169, 2848–2862.

Wang L F, Qi X X, Huang X S, Xu L L, Jin C, Wu J, Zhang S L. 2016. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. Plant Physiology and Biochemistry105, 150–161.

Wang X, You H, Yuan Y, Zhang H, Zhang L. 2018. The cellular pathway and enzymatic activity for phloem-unloading transition in developing Camellia oleifera Abel. fruit. Acta Physiologiae Plantarum40, 23.

Wang X Q, Zeng Q M, Contreras M D, Wang L J. 2017. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Research International102, 184–194.

Wang Z, Wei X, Yang J, Li H, Ma B, Zhang K, Zhang Y, Cheng L, Ma F, Li M. 2020. Heterologous expression of the apple hexose transporter MdHT2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit. Plant Biotechnology Journal18, 540–552.

Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U. 2000. Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant Journal21, 455–467.

Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg C P, Boles E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiaeFEBS Letters464, 123–128.

Yadav U P, Evers J F, Shaikh M A, Ayre B G. 2022. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. Journal of Experimental Botany73, 848–859.

Yan N. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences38, 151–159.

Yang S, Liang K, Sun Y, Zhang J, Cao Y, Zhou J, Wang A, Zhang L. 2023. Evidence of the predominance of passive symplasmic phloem loading and sugar transport with leaf ageing in Camellia oleiferaHorticulture Plant Journal9, 811–825.

Ye Z, Yu J, Yan W, Zhang J, Yang D, Yao G, Liu Z, Wu Y, Hou X. 2021. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleiferaHorticulture Research8, 157.

Yue C, Cao H L, Wang L, Zhou Y H, Huang Y T, Hao X Y, Wang Y C, Wang B, Yang Y J, Wang X C. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology88, 591–608

de Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science21, 677–685.

Zeng Q L, Chen R F, Zhao X Q, Shen R F, Noguchi A, Shinmachi F, Hasegawa I. 2013. Aluminum could be transported via phloem in Camellia oleifera Abel. Tree Physiology33, 96–105.

Zhang C, Han L, Slewinski T L, Sun J, Zhang J, Wang Z Y, Turgeon R. 2014. Symplasmic phloem loading in poplar. Plant Physiology166, 306–313.

Zhang H, Cui X, Guo Y, Luo C, Zhang L. 2018. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Molecular Biology98, 471–493.

Zhao Q, Ren Y R, Wang Q J, Yao Y X, You C X, Hao Y J. 2016. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnology Journal14, 1633–1645.

Zheng M, Beck M, Müller J, Chen T, Wang X, Wang F, Wang Q, Wang Y, Baluška F, Logan D C. 2009. Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLoS ONE4, e5961.

Zhou J, Du B, Chen Y, Cao Y, Yu M, Zhang L. 2022. Integrative physiological and transcriptomic analysis reveals the transition mechanism of sugar phloem unloading route in Camellia oleifera fruit. International Journal of Molecular Sciences23, 4590.

[1] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[2] Wanting Yu, Yonglu Dai, Junmin Chen, Aimin Liang, Yiping Wu, Qingwei Suo, Zhong Chen, Xingying Yan, Chuannan Wang, Hanyan Lai, Fanlong Wang, Jingyi Zhang, Qinzhao Liu, Yi Wang, Yaohua Li, Lingfang Ran, Jie Xiang, Zhiwu Pei, Yuehua Xiao, Jianyan Zeng. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3311-3327.
[3] Caixiang Wang, Meili Li, Dingguo Zhang, Xueli Zhang, Juanjuan Liu, Junji Su. Knockdown of the atypical protein kinase genes GhABC1K2-A05 and GhABC1K12-A07 make cotton more sensitive to salt and PEG stress[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3370-3386.
[4] DU Qiao-li, FANG Yuan-peng, JIANG Jun-mei, CHEN Mei-qing, LI Xiang-yang, XIE Xin. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3540-3555.
No Suggested Reading articles found!