Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2787-2804    DOI: 10.1016/j.jia.2022.07.036
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Response of leaf stomatal and mesophyll conductance to abiotic stress factors

LI Sheng-lan1, 2, 3*, TAN Ting-ting1, 2, 3*, FAN Yuan-fang1, 2, 3, Muhammad Ali RAZA1, 2, 3, WANG Zhong-lin1, 2, 3, WANG Bei-bei1, 2, 3, ZHANG Jia-wei1, 2, 3, TAN Xian-ming1, 2, 3, CHEN Ping1, 2, 3, Iram SHAFIQ1, 2, 3, YANG Wen-yu1, 2, 3, YANG Feng1, 2, 3

1 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, P.R.China

2 Sichuan Engineering Research Center for Crop Strip Intercropping, Chengdu 611130, P.R.China

3 Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  CO2是植物光合作用的重要原料,而气孔阻力与叶肉阻力是CO2扩散进入叶绿体的最大限制因素。植物的气孔导度和叶肉导度对非生物胁迫因子非常敏感,这些因子通过调控羧化位点CO2浓度来影响光合速率。气孔导度对环境的响应,叶肉导度的内部结构、生化因素限制早已有了相关综述,然而围绕环境因子对植物CO2扩散的系统调控还未进行归纳和探讨。因此,本文综述了气孔导度和叶肉导度对非生物胁迫因子(如光强、干旱、CO2浓度和温度)的快速响应和长期应答及其调控的生理机制,并对今后的研究趋势做了进一步展望。


Plant photosynthesis assimilates CO2 from the atmosphere, and CO2 diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.  The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors, which affect the CO2 concentrations at carboxylation sites to control photosynthetic rates.  Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.  However, reviews on the abiotic stress factors that systematically regulate plant CO2 diffusion are rare.  Therefore, in this review, the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors (such as light intensity, drought, CO2 concentration and temperature) and their physiological mechanisms are summarized.  Finally, future research trends are also investigated.

Keywords:  CO2 diffusion        abiotic stress factors        stomatal conductance        mesophyll conductance  
Received: 29 March 2021   Accepted: 07 July 2021
Fund: This work was supported by National Natural Science Foundation of China (32071963), the Chengdu Science and Technology Project, China (2020-YF09-00033-SN), a grant from the International S & T Cooperation Projects of Sichuan Province, China (2020YFH0126), and the China Agriculture Research System of MOF and MARA (CARS-04-PS19). 
About author:  LI Sheng-lan, Mobile: +86-18408260726, E-mail:; TAN Ting-ting, Mobile: +86-13890106521, E-mail:; Correspondence YANG Wen-yu, Tel: +86-28-86290516, E-mail:; YANG Feng, Tel: +86-28-86290960, Fax: +86-28-86290870, E-mail: * These authors contributed equally to this study.

Cite this article: 

LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng. 2022. Response of leaf stomatal and mesophyll conductance to abiotic stress factors. Journal of Integrative Agriculture, 21(10): 2787-2804.

Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra A. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress: Adaptation mechanisms and their applications. Advances in Experimental Medicine and Biology, 1081, 215–232.
Alguacil M M, Kohler J, Caravaca F, Roldán A. 2009. Differential effects of pseudomonas mendocina and glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microbial Ecology, 58, 942–951.
Allen G, Chu S, Harrington C, Schumacher K, Hoffmann T, Tang Y, Grill E, Schroeder J. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature, 411, 1053–1057.
Axel D Z, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 21, 667–685.
Balcerowicz M, Ranjan A, Rupprecht L, Fiene G, Hoecker U. 2014. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Developmental, 141, 3165–3176.
Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid K, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel R, Bittner F, Hetherington A, Hedrich R. 2013. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology, 23, 154–162.
Bernacchi C, Portis A, Nakano H, von Caemmerer S, Long S. 2002. Temperature response of mesophyll conductance. implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 130, 1992–1998.
Bharath P, Gahir S, Raghavendra A S. 2021. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Frontiers in Plant Science, 12, 615114.
Björkbacka H, Johansson M, Forsman C. 1999. Possible roles for His 208 in the active-site region of chloroplast carbonic anhydrase from pisum sativum. Archives of Biochemistry and Biophysics, 361, 17–24.
Boccalandro H E, Rugnone M L, Moreno J E, Ploschuk E L, Serna L, Yanovsky M J, Casal J J. 2009. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiology, 150, 1083–1092.
Boex-Fontvieille E, Jossier M, Davanture M, Zivy M, Hodges M, Tcherkez G. 2014. Differential protein phosphorylation regulates chloroplast movement in response to strong light and darkness in Arabidopsis thaliana. Plant Molecular Biology Reporter, 32, 987–1001.
Bosabalidis A M, Kofidis G. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163, 375–379.
Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang P, Poretsky E, Belknap T, Waadt R, Aleman F, Schroeder J. 2015. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife Sciences, 4, doi: 10.7554/eLife.03599.
von Caemmerer S, Evans J R. 2015. Temperature responses of mesophyll conductance differ greatly between species. Plant Cell and Environment, 38, 629–637.
Cai Y F, Yang Q Y, Li S F, Wang J H, Huang W. 2017. The water-water cycle is a major electron sink in Camellia species when CO2 assimilation is restricted. Journal of Photochemistry and Photobiology (B: Biology), 168, 59–66.
Campany C E, Tjoelker M G, Von Caemmerer S, Duursma R A. 2016. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. Plant Cell and Envionment, 39, 2762–2773.
Casson S A, Franklin K A, Gray J E, Grierson C S, Whitelam G C, Hetherington A M. 2009. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Current Biology, 19, 229–234.
Casson S A, Hetherington A M. 2010. Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13, 90–95.
Cerasoli S, Wertin T, McGuire M A, Rodrigues A, Aubrey D, Pereira J, Teskey R. 2014. Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature. AoB Plants, 6, plu018.
Chater C, Peng K, Movahedi M, Dunn J, Walker H, Liang Y K, McLachlan D, Casson S, Isner J C, Wilson I, Neill S, Hedrich R, Gray J, Hetherington A. 2015. Elevated CO2-induced responses in stomata require ABA and ABA signaling. Current Biology, 25, 1–8.
Cochard H, Venisse J S, Barigah T, Brunel N, Herbette S, Guilliot A, Tyree M, Sakr S. 2007. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology, 143, 122–133.
D’Angelo C, Weinl S, Batistic O, Pandey G, Cheong Y H, Schültke S, Albrecht-Borth V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. 2007. Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. The Plant Journal, 48, 857–872.
Daloso D M, dos Anjos L, Fernie A R. 2016. Roles of sucrose in guard cell regulation. New Phytologist, 211, 809–818.
Douthe C, Dreyer E, Epron D, Warren C. 2011. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. Journal of Experimental Botany, 62, 5335–5346.
Dow G J, Bergmann D C, Berry J A. 2014. An integrated model of stomatal development and leaf physiology. New Phytologist, 201, 1218–1226.
Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Feng Y, Liu J, Shu K, Liu W G, Yang W Y. 2018. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17, 747–754.
Du Q J, Xing G M, Jiao X C, Song X M, Li J M. 2018. Stomatal responses to long-term high vapor pressure deficits mediated most limitation of photosynthesis in tomatoes. Acta Physiologiae Plantarum, 40, doi: 10.1007/s11738-018-2723-7.
Du X Z, Jin Z P, Zhang L P, Liu X, Yang G D, Pei Y X. 2019. H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant and Soil, 435, 295–307.
Durand M, Brendel O, Buré C, Le Thiec D. 2020. Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field grown poplars. New Phytologist, 227, 392–406.
Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, MÖLs T, Kasparova I, Vapaavuori E, Laisk A. 2004. Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2- and O3-enriched atmospheres. Plant Cell and Environment, 27, 479–495.
Eisenach C, Baetz U, Huck N, Zhang J, De Angeli A, Beckers G, Martinoia E. 2017. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. The Plant Cell, 29, 2552–2569.
Engineer C B, Ghassemian M, Anderson J C, Peck S C, Hu H H, Schroeder J I. 2014. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 513, 246–250.
Engineer C B, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordstrom M, Azoulay-Shemer T, Rappel W J, Iba K, Schroeder J I. 2015. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends in Plant Science, 21, 16–30.
Evans J. 2020. Mesophyll conductance: Walls, membranes and spatial complexity. New Phytologist, 229, 1864–1876.
Evans J, von Caemmerer S. 2012. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell and Environment, 36, 745–756.
Evans J, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany, 60, 2235–2348.
Flexas J, Barbour M, Brendel O, Cabrera H, Carriquí M, Diaz-Espejo A, Douthe C, Dreyer E, Ferrio J P, Gago J, Galle A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina J J, Pou A, Ribas-Carbo M, Tomàs M, Warren C. 2012. Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science: An International Journal of Experimental Plant Biology, 193–194, 70–84.
Flexas J, Carriquí M, Coopman R, Gago J, Galmés J, Martorell S, Morales F, Diaz-Espejo A. 2014. Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48.
Flexas J, Diaz-Espejo A. 2014. Interspecific differences in temperature response of mesophyll conductance: Food for thought on its origin and regulation. Plant Cell and Environment, 38, 625–628.
Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. 2007. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell and Environment, 30, 1284–1298.
Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmés J, Medrano H. 2008. Mesophyll conductance to CO2: Current knowledge and future prospects. Plant Cell and Environment, 31, 602–621.
Fu Q, Yang R, Wang H, Zhao B, Zhou C, Ren S, Guo Y. 2013. Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica, 51, 109–114.
Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. 2009. In vitro reconstitution of an ABA signaling pathway. Nature, 462, 660–664.
Gao G L, Zhang X Y, Chang Z Q, Yu T F, Zhao H. 2016. Environmental response simulation and the up-scaling of plant stomatal conductance. Acta Ecologica Sinica, 36, 1491–1500. (in Chinese) 
Ge K, Liu X, Li X, Hu B, Li L. 2017. Isolation of an ABA Transporter-Like 1 gene from Arachis hypogaea that affects ABA import and reduces ABA sensitivity in Arabidopsis. Frontiers in Plant Science, 8, 01150.
Geiger D, Maierhofer T, Al-Rasheid K, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and thereceptor RCAR1. Science Signaling, 4, ra32.
Geng S, Misra B, DeArmas E, Huhman D, Alborn H, Sumner L, Chen S. 2016. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. The Plant Journal, 88, 947–962.
Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis F. 2007. The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 104, 10726–10731.
Gray J E, Holroyd G H, van der Lee F M, Bahrami A R, Sijmons P C, Woodward F I, Schuch W, Hetherington A M. 2000. The HIC signalling pathway links CO2 perception to stomatal development. Nature, 408, 713–716.
von Groll U, Berger D, Altmann T. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. The Plant Cell, 14, 1527–1539.
Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C. 2015. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27, 1945–1954.
Habermann E, de Oliveira E A D, Contin D R, Martin J A B, Curtarelli L, Gonzàlez-Meler M A, Martinez C A. 2019. Stomatal development and conductance of a tropical forage legume are regulated by elevated [CO2] under moderate warming. Frontiers in Plant Science, 10, doi: 10.3389/fpls.2019.00609.
Han J M, Lei Z Y, Zhang Y J, Yi X P, Zhang W F. 2018. Drought introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. Physiologia Plantarum, 166, 873–887.
Han J M, Zhang W F, Xiong D L, Flexas J, Zhang Y L. 2017. Mesophyll conductance and its limiting factors in plant leaves. Chinese Journal of Plant Ecology, 41, 914–924. (in Chinese)
Harrison E, Cubas L, Gray J, Hepworth C. 2019. The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101, 768–779.
Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J, Iba K. 2006. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nature Cell Biology, 8, 391–397.
Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M, Fujimi M, Miyamoto M, Akita K, Negi J, Shirasu K. 2013. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nature Communications, 4, 1–9.
Hedrich R, Neimanis S, Savchenko G, Felle H, Kaiser W, Heber U. 2001. Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. Planta, 213, 594–601.
Hepworth C, Dohenyadams T, Hunt L, Cameron D D, Gray J E. 2015. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytologist, 208, 336–341.
Hong D, Jeon B, Kim S, Hwang J U, Lee Y. 2016. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. The New Phytologist, 209, 624–635.
Hõrak H, Sierla M, Tõldsepp K, Wang C, Wang Y S, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog M, Brosche M, Schroeder J, Kangasjärvi J, Kollist H. 2016. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. The Plant Cell, 28, 2493–2509.
Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences of the United States of America, 100, 5549–5554.
Hronková M, Wiesnerová D, Šimková M, Skůpa P, Dewitte W, Vráblová M, Zažímalová E, Santrucek J. 2015. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves. Journal of Experimental Botany, 66, 4621–4630.
Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn J, Schroeder J. 2011. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology, 13, 87–95.
Hua D P, Wang C, Junna H, Liao H, Duan Y, Zhu Z Q, Guo Y, Chen Z Z, Gong Z Z. 2012. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant Cell, 24, 2546–2561.
Huang S G, Waadt R, Nuhkat M, Kollist H, Hedrich R, Roelfsema M. 2019. Ca2+ signals in guard cells enhance the efficiency by which ABA triggers stomatal closure. New Phytologist, 224, 177–187.
Hughes J, Hepworth C, Dutton C, Dunn J, Hunt L, Stephens J, Cameron D, Waugh R, Gray J. 2017. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiology, 174, 776–787.
Imes D, Mumm P, Böhm J, Al-Rasheid K, Marten I, Geiger D, Hedrich R. 2013. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. The Plant Journal, 74, 372–382.
Israelsson M, Siegel R, Young J, Hashimoto M, Iba K, Schroeder J. 2007. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Current Opinion in Plant Biology, 9, 654–663.
Jia L G, Chen Y Z, Fan M S, Li W R, Zhang J H. 2020. MAP3Kθ1 is involved in abscisic acid signaling in drought tolerance and seed germination in Arabidopsis. Journal of Plant Biology, 63, 11–21.
Jones A M, Danielson J A, Manojkumar S N, Lanquar V, Grossmann G, Frommer W B. 2014. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, 3, e01741.
Kang C Y, Lian H L, Wang F F, Huang, Yang H Q. 2009. Cryptochrome, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. The Plant Cell, 21, 2624–2461.
Kang J, Hwang J U, Lee M, Kim Y Y, Assmann S, Martinoia E, Lee Y. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America, 107, 2355–2360.
Kawase M, Hanba Y, Katsuhara M. 2013. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. Journal of Plant Research, 126, 517–527.
Kim T H, Böhmer M, Hu H H, Nishimura N, Schroeder J. 2010. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561–591.
Kinoshita T, Hayashi Y. 2011. New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. International Review of Cell and Molecular Biology, 289, 89–115.
Kirschbaum M, McMillan A. 2018. Warming and elevated CO2 have opposing influences on transpiration. Which is more important? Current Forestry Reports, 4, 1–21.
Klein T, Ramon U. 2019. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Functional Ecology, 33, 1411–1424.
Klermund C, Ranftl Q, Diener J, Bastakis E, Richter R, Schwechheimer C. 2016. LLM-domain B-GATA transcription factors promote stomata development downstream from light signaling in Arabidopsis thaliana hypocotyls. The Plant Cell, 28, 646–660.
Kumari A, Jewaria P, Bergmann D, Kakimoto T. 2014. Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein. Plant and Cell Physiology, 55, 2037–2046.
Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K. 2010. ABC transporter AtABCG25 ts involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America, 107, 2361–2366.
Kwak J, Mori I, Pei Z M, Leonhardt N, Torres M A, Dangl J, Bloom R, Bodde S G, Jones J, Schroeder J. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 22, 2623–2633.
Lahr E, Schade G, Crossett C, Watson M. 2015. Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas. Global Change Biology, 21, 4221–4236.
Lake J, Woodward I, Quick W. 2002. Long-distance CO2 signalling in plants. Journal of Experimental Botany, 53, 183–193.
Lau O S, Deng X. 2012. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in Plant Science, 17, 584–593.
Lawson T, Matthews J. 2020. Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273–302.
Lee E, Lucas J, Sack F. 2014. Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. The Plant Journal, 78, 555–565.
Lee J, Hnilova M, Maes M, Lin Y C, Putarjunan A, Han S K, Avila J, Torii K. 2015. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature, 522, 439–443.
Lee J H, Jung J H, Park C M. 2017. Light inhibits COP1-mediated degradation of ICE transcription factors to induce stomatal development in Arabidopsis. The Plant Cell, 29, 2817–2830.
Lee L R, Bergmann D C. 2019. The plant stomatal lineage at a glance. Journal of Cell Science, 132, doi: 10.1242/jcs.228551.
Lee M, Choi Y, Burla B, Kim Y Y, Jeon B, Maeshima M, Yoo J Y, Martinoia E, Lee Y. 2008. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biology, 10, 1217–1223.
Li K, Li S J, Zhou Z Z, Yao H J, Zhou Y, Tang X Q, Wang K C. 2019. Effects of drought stress on glandular trichomes, stomatal density and volatile exudates of Schizonepeta tenuifolia. China Journal of Chinese Materia Medica, 44, 35–42. (in Chinese)
Li K, Yang F, Zhang G, Song S, li Y, Miao Y, Ren D, Song Y. 2016. AIK1, a mitogen-activated protein kinase, modulates abscisic acid responses through the MKK5-MPK6 kinase cascade. Plant Physiology, 173, 1391–1408.
Li Y, Peng S B, Huang J L, Xiong D L. 2013. Components and magnitude of mesophyll conductance and its responses to environmental variations. Plant Physiology Journal, 49, 1143–1154. (in Chinese)
Li Y, Song X, Li S, Salter W, Barbour M. 2019. The role of leaf water potential in the temperature response of mesophyll conductance. New Phytologist, 225, 1193–1205.
Li Y P, Li H B, Li Y Y, Zhang S Q. 2017. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 17, 231–239.
Liang L, Yang J, Gao Z X, Wang Q, Liang Q, Song Z H, Bi Y, Li C N, He H, Fan L M. 2018. SPINDLY is involved in ABA signaling bypassing the PYR/PYLs/RCARs-mediated pathway and partly through functional ABAR. Environmental and Experimental Botany, 151, 43–54.
Liu Q, Wang Z, Yu S, Li W, Zhang M, Yang J, Li D, Yang J, Li C. 2020. Pu-miR172d regulates stomatal density and water use efficiency via targeting PuGTL1 in poplar. Journal of Experimental Botany, 72, eraa493.
Liu S, Jia F, Jiao Z, Wang J, Xia X, Yin W. 2019. Ectopic expression of secretory peptide PdEPF3 in Arabidopsis confers drought tolerance with reduced stomatal density. Acta Societatis Botanicorum Poloniae, 88, 3627.
Liu S P, Liu J M, Cao J Y, Bai C G, Shi R. 2006. Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. Journal of Anhui Agriculcutral Science, 34, 1315–1318. (in Chinese)
Luo D, Wang C, Jin Y. 2019. Stomatal regulation of plants in response to drought stress. The Journal of Applied Ecology, 30, 4333–4343.
Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y, Zhang Y, Jiang W, She X, Wang G. 2017. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytologist, 217, 290–304.
Maierhofer T, Diekmann M, Offenborn J N, Lind C, Bauer H, Hashimoto K, Al-Rasheid K, Luan S, Kudla J, Geiger D, Hedrich R. 2014. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Science Signaling, 7, ra86.
Makino A. 2010. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology, 155, 125–129.
Matsuda S, Takano S, Sato M, Furukawa K, Nagasawa H, Yoshikawa S, Kasuga J, Tokuji Y, Yazaki K, Nakazono M, Takamure I, Kato K. 2016. Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5. Molecular Plant, 9, 417–427.
Matthews J S A, Silvere V C, Tracy L. 2018. Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiology, 176, 1939–1951.
Meeteren U, Kaiser E, Matamoros P, Verdonk J, Aliniaeifard S. 2019. Is nitric oxide a critical key factor in ABA-induced stomatal closure? Journal of Experimental Botany, 71, 339–410.
Meinhard M, Grill E. 2001. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Letters, 508, 443–446.
Meng L S, Li C, Xu M K, Sun X D, Wan W, Cao X Y, Chen K M. 2018. Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in regulating light-mediated stomatal development. Plant Cell and Environment, 41, 1645–1656.
Meng X, Chen X, Mang H, Liu C, Yu X, Gao X, Torii K, He P, Shan L. 2015. Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. Current Biology, 25, 2361–2372.
Merilo E, Jalakas P, Kollist H, Brosche M. 2015. The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. Molecular Plant, 8, 657–659.
Merilo E, Laanemets K, Hu H H, Xue S W, Jakobson L, Tulva I, Gonzalez-Guzman M, Rodriguez P L, Schroeder J, Brosche M, Kollist H. 2013. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiology, 162, 1652–1668.
Meyer S, Mumm P, Imes D, Endler A, Hedrich R. 2010. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant Journal for Cell Molecular Biology, 63, 1054–1062.
Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I. 2015. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant, Cell and Environment, 38, 388–398.
Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I. 2018. Effects of instantaneous and growth CO2 levels, and ABA on stomatal and mesophyll conductances: Mesophyll conductance, high CO2 and ABA. Plant Cell and Environment, 42, 1257–1269.
Moon S J, Kim H, Hwang H, Kim J A, Lee Y, Min M, Yoon I, Kwon T R, Kim B G. 2017. A dominant negative OsKAT2 mutant delays light-induced stomatal opening and improves drought tolerance without yield penalty in rice. Frontiers in Plant Science, 8, 00772.
Mori I, Murata Y, Yang Y, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J, Harper J, Ecker J, Kwak J, Schroeder J. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biology, 4, 1749–1762.
Mott K, Sibbernsen E, Shope J. 2008. The role of the mesophyll in stomatal responses to light and CO2. Plant Cell and Environment, 31, 1299–1306.
Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder J. 2015. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28, 154–162.
Murata Y, Mori I, Munemasa S. 2015. Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369–392.
Murata Y, Pei Z M, Mori I C, Schroeder J. 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. The Plant Cell, 13, 2513–2523.
Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 452, 483–486.
Olsovska K, Kovar M, Brestic M, Zivcak M, Slamka P, Shao H. 2016. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Frontiers in Plant Science, 7, 1111.
Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo S U, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. 2013. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. The Plant Cell, 25, 609–624.
Ouyang S, Liu Y F, Lei G, Gao H, Ma B, Zhang W K, Zhang J S, Chen S Y. 2010. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant Journal, 62, 316–329.
Ouyang W J, Struik P, Yin X Y, Yang J C. 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany, 68, 5191–5205.
Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie J, Blatt M. 2019. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science, 363, 1456–1459.
Piel C. 2003. Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. Journal of Experimental Botany, 53, 2423–2430.
Raghavendra A S, Gonugunta V K, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science, 15, 395–401.
Sage R F, Kubien D S. 2007. The temperature response of C3 and C4 photosynthesis. Plant Cell and Environment, 30, 1086–1106.
Saito T, Terashima I. 2010. Reversible decreases in the bulk elastic modulus of mature leaves of deciduous Quercus species subjected to two drought treatments. Plant Cell and Experimental, 27, 863–875.
Santiago J, Rodrigues A, Sáez Á, Rubio S, Antoni R, Dupeux F, Park S Y, Márquez J A, Cutler S R, Rodriguez P L. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60, 575–588.
Schulze S, Dubeaux G, Ceciliato P, Munemasa S, Nuhkat M, Yarmolinsky D, Aguilar J, Diaz R, Azoulay T, Steinhorst L, Offenborn J N, Kudla J, Kollist H, Schroeder J. 2020. A role for calcium-dependent protein kinases in differential CO2- and ABA-controlled stomatal closing and low CO2- induced stomatal opening in Arabidopsis. New Phytologist, 229, 2755–2779.
Shafiq I, Hussain S, Raza M A, Iqbal N, Asghar M A, Raza A, Fan Y F, Mumtaz M, Shoaib M, Ansar M, Manaf A, Yang W Y, Yang F. 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20, 4–23.
Shang Y, Dai C, Myeong M L, June M K, Kyoung H N. 2016. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Molecular Plant, 9, 447–460.
Shi K, Li X, Zhang H, Zhang G Q, Liu Y R, Zhou Y H, Xia X J, Chen Z X, Yu J Q. 2015. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato. The New Phytologist, 208, 342–353.
Shi Z M, Feng Q H, Cheng R M, Liu S R. 2010. The research progress of mesophyll conductance. Acta Ecologica Sinica, 30, 4792–4803. (in Chinese)
Shrestha A, Song X, Barbour M. 2019. The temperature response of mesophyll conductance, and its component conductances, varies between species and genotypes. Photosynthesis Research, 141, 65–82.
Siegel R, Xue S W, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder J. 2009. Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. The Plant Journal, 59, 207–220.
Simkin A, McAusland L, Headland L, Lawson T, Raines C. 2015. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. Journal of Experimental Botany, 66, 4075–4090.
Singsaas E, Ort D, DeLucia E. 2003. Elevated CO2 effects on mesophyll conductance and its consequence for interpreting photosynthetic physiology. Plant Cell and Environment, 27, 41–50.
Sirichandra C, Gu D, Hu H C, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak J. 2009. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Letters, 583, 2982–2896.
Suh S, Wang Y F, Frelet-Barrand A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho M, Martinoia E, Schroeder J. 2007. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. The Journal of Biological Chemistry, 282, 1916–1924.
Sun L, Li Y, Miao W, Piao T, Hao Y, Hao F S. 2017. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H2O2, Ca2+ and nitric oxide in Arabidopsis guard cells. Plant Science, 262, 81–90.
Sutter J U, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt M. 2007. Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Current Biology, 17, 1396–1402.
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature, 556, 235–241.
Tanaka Y, Nose T, Jikumaru Y, Kamiya Y. 2013. ABA inhibits entry into stomatal lineage development in Arabidopsis leaves. The Plant Journal, 74, 448–457.
Tang M, Zhao X, Hu Y, Zeng M, Wang K, Dong N, Ma X, Bai L, Song Y. 2020. Arabidopsis guard cell CO2/HCO3− response mutant screening by an aequorin-based calcium imaging system. Plant Methods, 16, 59.
Tang X L, Cao Y H, Hong G L, Zhou B Z. 2017. Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633–6645. (in Chinese)
Tazoe Y, von Caemmerer S, Badger M, Evans J. 2009. Light and CO2 do not affect the internal conductance to CO2 diffusion in wheat leaves. Journal of Experimental Botany, 60, 2291–2301.
Theroux-Rancourt G, Ethier G, Pepin S. 2014. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. Journal of Experimental Botany, 65, 741–753.
Theroux-Rancourt G, Gilbert M. 2017. The light response of mesophyll conductance is controlled by structure across leaf profiles. Plant Cell and Environment, 40, 726–740.
Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I. 2008. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell and Environment, 31, 1688–1700.
Tian W, Hou C C, Ren Z, Pan Y J, Jia J J, Zhang H W, Bai F L, Zhang P, Zhu H P, He Y K, Luo S L, Li L G, Luan S. 2015. A molecular pathway for CO2 response in Arabidopsis guard cells. Nature Communications, 6, 1–10.
Tomàs M, Medrano H, Brugnoli E, Escalona J, Martorell S, Pou A, Ribas-Carbo M, Flexas J. 2014. Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Australian Journal of Grape and Wine Research, 20, 272–280.
Ubierna N, Gandin A, Cousins A. 2018. The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays. Journal of Experimental Botany, 69, 1159–1170.
Urban J, Ingwers M, McGuire M A, Teskey R. 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides×nigra. Journal of Experimental Botany, 68, 1757–1767.
Valladares F, Niinemets Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology Evolution and Systematics, 39, 237–257.
Voicu M, Cooke J, Zwiazek J. 2009. Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance. Journal of Experimental Botany, 60, 4063–4075.
Vráblová M, Hronková M, Vrabl D, Kubásek J, Santrucek J. 2018. Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environmental and Experimental Botany, 156, 316–324.
Wang C, Zhang J, Wu J, Brodsky D, Schroeder J. 2018. Cytosolic malate and oxaloacetate activate S-type anion channels in Arabidopsis guard cells. New Phytologist, 220, 178–186.
Wang J H, Cai Y F, Li S F, Zhang S B. 2020. Photosynthetic acclimation of rhododendrons to light intensity in relation to leaf water-related traits. Plant Ecology, 221, 1–14.
Wang X Q, Ullah H, Jones A, Assmann S. 2001. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 292, 2070–2072.
Wang X X, Du T T, Huang J L, Peng S B, Xiong D L. 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice (Oryza sativa). Journal of Experimental Botany, 69, 4033–4045.
Wang Y, Blatt M. 2011. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. The Biochemical Journal, 439, 161–170.
Warren C, Dreyer E. 2006. Temperature response of photosynthesis and internal conductance to CO2: Results from two independent approaches. Journal of Experimental Botany, 57, 3057–3067.
Warren C R, Löw M, Matyssek R. 2007. Internal conductance to CO2 transfer of adult Fagus sylvatica: Variation between sun and shade leaves and due to free-air ozone fumigation. Environmental Experimental Botany, 59, 130–138.
Wei H B, Kong D X, Yang J, Yang W H. 2020. Light regulation of stomatal development and patterning: Shifting the paradigm from Arabidopsis to grasses. Plant Communications, 1, doi: 10.1016/j.xplc.2020.100030.
Weiner J, Peterson F, Volkman B, Cutler S. 2010. Structural and functional insights into core ABA signaling. Current Opinion in Pant Biology, 13, 495–502.
Xiang C B, Zhao P X, Miao Z Q, Zhang J, Liu Q Q. 2020. MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. Journal of Experimental Botany, 71, eraa303.
Xiang Y, Sun X, Bian X, Wei T, Han T, Yan J, Zhang A. 2020. ZmNAC49 reduces stomatal density to improve drought tolerance in maize. Journal of Experimental Botany, 72, 1399–1410.
Xie C, Zhang R X, Qu Y T, Miao Z Y, Zhang Y Q, Shen X Y, Wang T, Dong J L. 2012. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. The New Phytologist, 195, 124–135.
Xiong D L. 2016. Coordination of leaf morpho-anatomical traits, photosynthesis and leaf hydraulic conductance in Oryza. Ph D thesis, Huazhong Agricultural University, China. (in Chinese)
Xiong D L, Douthe C, Flexas J. 2017. Differential coordination of stomatal conductance, mesophyll conductance and leaf hydraulic conductance in response to changing light across species: Coordination of CO2 diffusion and H2O transport inside leaves. Plant Cell and Environment, 41, 436–450.
Xiong D L, Liu X, Liu L, Douthe C, Li Y, Peng S B, Liang H J. 2015. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell and Environment, 38, 2541–2550.
Xiong H, Ma C E, Li L, Zeng H, Guo D L. 2014. Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats. Chinese Journal of Plant Ecology, 38, 868–877.
Xu Z Z, Zhou G S. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59, 3317–3325.
Xue S W, Hu H H, Ries A, Merilo E, Kollist H, Schroeder J. 2011. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. The EMBO Journal, 30, 1645–1658.
Yamori W, Evans J, von Caemmerer S. 2009. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. Plant Cell and Environment, 33, 332–343.
Yamori W, Kusumi K, Iba K, Terashima I. 2020. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell and Environment, 43, 1230–1240.
Yang Y J, Hu H, Huang W. 2020. The light dependence of mesophyll conductance and relative limitations on photosynthesis in evergreen sclerophyllous rhododendron species. Plants, 9, 1536.
Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. 2010. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. The Plant Cell, 22, 4128–4141.
Young J, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder J. 2006. CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proceedings of the National Academy of Sciences of the United States of America, 103, 7506–7511.
Zait Y, Shtein I, Schwartz A. 2018. Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance. Tree Physiology, 39, 1–16.
Zhang Q, Peng S, Li Y. 2019. Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. Journal of Experimental Botany, 70, 5259–5269.
Zhao C Z, Wang P C, Si T, Hsu C C, Wang L, Zayed O, Yu Z P, Zhu Y F, Dong J, Tao W, Zhu J K. 2017. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Developmental Cell, 43, 618–629.
Zhao P X, Miao Z Q, Zhang J, Liu Q Q, Xiang C B. 2019. MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. Journal of Experimental Botany, 71, 6092–6106.
Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Fang i, Wu, Xu Y H, Zhang X Y, Zhang D P. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. The Plant Cell, 19, 3019–3036.
Zhu Z D, Sun H J, Li J, Yuan Y X, Zhao J F, Zhang C G, Chen Y L. 2021. RIC7 plays a negative role in ABA-induced stomatal closure by inhibiting H2O2 production. Plant Signaling & Behavior, 16, 1876379.

[1] ZHAO Fu-nian, ZHOU Shuang-xi, WANG Run-yuan, ZHANG Kai, WANG He-ling, YU Qiang. Quantifying key model parameters for wheat leaf gas exchange under different environmental conditions[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2188-2205.
[2] Azam BORZOUEI, Mir Ahmad MOUSAVI SHALMANI, Ali ESKANDARI . Effects of salt and nitrogen on physiological indices and carbon isotope discrimination of wheat cultivars in the northeast of Iran[J]. >Journal of Integrative Agriculture, 2020, 19(3): 656-667.
[3] A. Stellfeldt, M. A. Maldonado, J. J. Hueso, J. Cuevas. Gas exchange and water relations of young potted loquat cv. Algerie under progressive drought conditions[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1360-1368.
[4] LIU Xi, LI Yong. Varietal difference in the correlation between leaf nitrogen content and photosynthesis in rice (Oryza sativa L.) plants is related to specific leaf weight[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2002-2011.
No Suggested Reading articles found!