Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Abiotic stress responses in crop plants: A multi-scale approach

Yanqing Wu1, Jiao Liu1, Lu Zhao2, Hao Wu1, Yiming Zhu1, Irshad Ahmad1, 2#, Guisheng Zhou1, 2#

1 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China 

2 College for Overseas Education, Yangzhou University, Yangzhou 225000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

人口压力促使全球各国思考如何在各种环境挑战下增加、保护和开发最佳植物物种,以确保生产力。除了气候变化,自然波动和人类活动的变化也导致了严重的环境退化,通过环境中的物理压力威胁全球粮食安全。全球农业产量面临的主要环境限制因素包括盐胁迫、水分缺乏胁迫、营养失衡(包括矿物毒性和缺乏)以及温度极端。非生物因素,如农业因素、气候因素和土壤养分可利用性,显著影响作物产量。植物为生存启动并发展多种可能的胁迫机制,这些机制可以是分子、细胞或生理层面的。非生物胁迫对作物的生长和生产力产生显著影响,无论是单一形式还是组合形式。例如,干旱胁迫会导致叶面积、株高和作物发育的减少;冷胁迫则降低植物的发育和作物的效率,导致生产力损失。盐胁迫不仅会导致植物的水分胁迫,还会对胞质代谢、细胞发育、膜功能产生不利影响,并增加活性氧(ROS)的生成。较高浓度的二氧化碳可能改善全球降水模式,导致降雨量增加,这可能对作物发育产生负面影响。在过度水分胁迫下,作物的直链淀粉含量较低,但粗蛋白质含量较高。这反过来会通过阻碍种子萌发和因高渗透势与离子毒性的共同作用造成生长损伤,从而影响作物生产的质量和数量。为应对非生物胁迫,植物进化出多种逃避-回避和耐受机制,包括生理适应和整合的细胞或分子反应。因此,本综述论文的主要目的是研究非生物胁迫对各种作物的形态生理、生化和分子活动的影响。此外,我们重点关注作物与非生物胁迫之间的相互关系,以便作物能够应对并适应这些胁迫以实现生存,这为未来物种选择或新耐受物种的开发提供了基本的路线图。



Abstract  

Population stress has compelled the whole world to think about increasing, protecting, and finding ways to develop the best plant species for assured productivity in spite of all environmental odds.  In addition to climate change, fluctuations in nature and human activities pose serious environmental degradation, threatening global food security through physical stress in the environment.  Significant environmental constraints on agricultural yield worldwide include salt stress, water deficiency stress, nutritional imbalances (including mineral toxicity and deficiencies), and temperature extremes.  Abiotic factors, such as agronomic factors, climatic factors, and nutrient availability in the soil, influence crop yield.  Plants initiate and develop various possible stress mechanisms for their survival, which can be molecular, cellular and physiological.  Abiotic stress has a high impact on crop growth and productivity, either in single forms or in combined forms.  For example, drought stress causes a decrease in leaf area, plant height, and crop development.  Cold stress reduces plant development and crop efficiency, resulting in productivity loss.  Salinity stress not only contributes to water stress in plants, but it can also adversely influence cytosolic metabolism, cell development, membrane function, and increase reactive oxygen species (ROS) generation.  Higher concentrations of CO2 could potentially improve global precipitation, resulting in increased rainfall, which can adversely affect crop development.  Crops under excessive water stress have a lower percentage of amylose but a higher crude protein content.  This in turn, affects the quality and quantity of crop production by hindering seed germination and causing growth damage due to the combined effects of higher osmotic potential and ion toxicity.  In response to abiotic stress, plants evolve a variety of escape-avoidance and tolerance mechanisms, which include physiological adaptation and integrated cellular or molecular responses.  Therefore, the main purpose of the current review paper is to investigate the effect of abiotic stress on morpho-physiological, biochemical and molecular activities in various crops.  Moreover, we concentrate on crop inter-relativity with abiotic stress to react to and adapt to for survival, which can be a basic roadmap for the selection of species or the development of new tolerant species in the future.  

Keywords:  morpho-physiological       abiotic stress              biochemical              molecular              crop productivity              salinity              drought              temperature stress              heavy metal              pant toxicity  
Online: 12 September 2024  
Fund: 

The research was financially supported by the China National Key R&D Program (2022YFE0113400), the Jiangsu Provincial Fund for Realizing Carbon Emission Peaking and Neutralization, China (BE2022305), the National Natural Science Funds (32102411), and the Project funded by China Postdoctoral Science Foundation (2022M722698).  

About author:  Yanqing Wu, E-mail: yqwu@yzu.edu.cn; #Correspondence Irshad Ahmad, E-mail: irshadgadoon737@yahoo.com; Guisheng Zhou, E-mail: gszhou@yzu.edu.cn

Cite this article: 

Yanqing Wu, Jiao Liu, Lu Zhao, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. 2024. Abiotic stress responses in crop plants: A multi-scale approach. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.003

Ahmad H, Zafar S A, Naeem M K, Shokat S, Inam S, Naveed S A, Xu J, Li Z, Ali G M, Khan M R. 2022a. Impact of pre-anthesis drought stress on physiology, yield-related traits, and drought-responsive genes in green super rice. Frontiers in Genetics, 256, 13-832542.

Ahmad I, Song X, Hussein Ibrahim M E, Jamal Y, Younas M U, Zhu G, Zhou G, Adam Ali A Y. 2023a. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. Frontiers in Plant Science, 14, 1108507.

Ahmad I, Zhu G, Zhou G, Liu J, Younas M U, Zhu Y. 2023b. Melatonin role in plant growth and physiology under abiotic stress. International Journal of Molecular Sciences, 24, 8759.

Ahmad I, Zhu G, Zhou G, Song X, Ibrahim M E H, Salih E G I, Hussain S, Younas M U. 2022b. Pivotal role of phytohormones and their responsive genes in plant growth and their signaling and transduction pathway under salt stress in cotton. International Journal of Molecular Sciences, 23, 7339.

Ahmad I, Zhu G, Zhou G, Younas M U, Suliman M E, Liu J, Zhu Y M, Gabralla E I S. 2023c. Integrated approaches for increasing plant yield under salt stress. Frontiers in Plant Science, 14, 1215343.

Ahmed I M, Cao F, Zhang M, Chen X, Zhang G, Wu F. 2013. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS ONE, 8, e77869.

Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, ul Rehman M S N, Butt A, Lightfoot D A, Maekawa M. 2015. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 95, 2237-2243.

Akbari G, Sanavy S, Yousefzadeh S. 2007. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan Journal of Biological Sciences, 10, 2557-2561.

Alagoz S M, Hadi H, Toorchi M, Pawłowski T A, Lajayer B A, Price G W, Farooq M, Astatkie T. 2023. Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Scientific Reports, 13, 8896.

Ashkavand P, Zarafshar M, Tabari M, Mirzaie J, Nikpour A, Bordbar S K, Struve D, Striker G G. 2018. Application of SiO2 nanoparticles as pretreatment alleviates the impact of drought on the physiological performance of Prunus mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica, 53, 1-10.

Ashraf M, Foolad M R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216.

Barrero-Sicilia C, Silvestre S, Haslam R P, Michaelson L V. 2017. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Science, 263, 194-200.

Bechtold U, Field B. 2018. Molecular Mechanisms Controlling Plant Growth During Abiotic Stress. Oxford University Press, UK. pp. 2753-2758.

Beena R, Vighneswaran V, Narayankutty M. 2018. Evaluation of rice genotypes for acquired thermo-tolerance using temperature induction response (TIR) technique. Oryza-An International Journal on Rice, 55, 285-291.

Bota J, Medrano H, Flexas J. 2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist, 162, 671-681.

Bray, E A, Bailey-Serres, J, Weretilnyk, E. 2000. Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants, 1158-1203.

Browse J, Xin Z. 2001. Temperature sensing and cold acclimation. Current Opinion in Plant Biology, 4, 241-246.

Cal A J, Sanciangco M, Rebolledo M C, Luquet D, Torres R O, McNally K L, Henry A. 2019. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell & Environment, 42, 1532-1544.

Camejo D, Rodríguez P, Morales M A, Dell’Amico J M, Torrecillas A, Alarcón J J. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281-289.

Cattivelli L, Rizza F, Badeck F W, Mazzucotelli E, Mastrangelo A M, Francia E, Marè C, Tondelli A, Stanca A M. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1-14.

Chamekh Z, Ayed S, Sahli A, Ayadi S, Hammemi Z, Jallouli S, Trifa Y, Amara H, Mezghenni H, Hamrouni L. 2014. Effect of salt stress on the flag leaf area and yield components in twenty five durum wheat genotypes (Triticum turgidum ssp. durum). Journal of New Sciences, 50, 3. 

Chaves M M, Maroco J P, Pereira J S. 2003. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30, 239-264.

Chen M, Thelen J J. 2013. Acyl-lipid desaturase2 is required for chilling and freezing tolerance in Arabidopsis. The Plant Cell, 25, 1430-1444.

Crafts-Brandner S J, Salvucci M E. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129, 1773-1780.

Cramer G R, Urano K, Delrot S, Pezzotti M, Shinozaki K. 2011. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 1-14.

Dehnavi M M, Zarei T, Khajeeyan R, Merajipoor M. 2017. Drought and salinity impacts on bread wheat in a hydroponic culture: A physiological comparison. Journal of Plant Physiology and Breeding, 7, 61-74.

Devasirvatham V, Tan D K. 2018. Impact of high temperature and drought stresses on chickpea production. Agronomy, 8, 145.

Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry, 276, 39586-39591.

Dong W, Chen J, Wang L, Tian Y, Zhang B, Lai Y, Meng Y, Qian C, Guo J. 2014. Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. The Crop Journal, 2, 63-69.

El-Esawi M A, Alayafi A A. 2019. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes, 10, 56.

Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S. 2017. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. 2009. Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture29, 153-188.

Ferrero D M, Piattoni C V, Asencion Diez M D, Rojas B E, Hartman M D, Ballicora M A, Iglesias A A. 2020. Phosphorylation of ADP-glucose pyrophosphorylase during wheat seeds development. Frontiers in Plant Science, 11, 1058.

Flora S, Mittal M, Mehta A. 2008. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research, 128, 501-523.

Flowers T. 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55, 307-319.

Galau G A, Bijaisoradat N, Hughes D W. 1987. Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: Coordinate regulation during embryogenesis and the role of abscisic acid. Developmental Biology, 123, 198-212.

Ghomi K, Rabiei B, Sabouri H, Sabouri A. 2013. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): An agrigenomics study of an Iranian rice population. Omics: A Journal of Integrative Biology, 17, 242-251.

Grattan S, Grieve C. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157.

Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596.

El Hafid R, Smith D H, Karrou M, Samir K. 1998. Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Annals of Botany, 81, 363-370.

Hall J Á. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11.

El-Hendawy S E, Hu Y, Schmidhalter U. 2005. Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Australian Journal of Agricultural Research, 56, 123-134.

Hirabayashi H, Sasaki K, Kambe T, Gannaban R B, Miras M A, Mendioro M S, Simon E V, Lumanglas P D, Fujita D, Takemoto-Kuno Y. 2015. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of Experimental Botany, 66, 1227-1236.

Hossain Z, Mustafa G, Komatsu S. 2015. Plant responses to nanoparticle stress. International Journal of Molecular Sciences, 16, 26644-26653.

Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12987-12992.

Hussain S, Zhang J H, Zhong C, Zhu L F, Cao X C, Yu S M, Bohr J A, Hu J J, Jin Q Y. 2017. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture, 16, 2357-2374.

Ingram J, Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Biology, 47, 377-403.

Irato P, Santovito G. 2021. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants (Basel, Switzerland), 10, 579.

Jagadish S K, Craufurd P Q, Wheeler T. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 58, 1627-1635.

Janská A, Maršík P, Zelenková S, Ovesná J. 2010. Cold stress and acclimation–what is important for metabolic adjustment? Plant Biology, 12, 395-405.

Juven-Gershon T, Hsu J Y, Theisen J W, Kadonaga J T. 2008. The RNA polymerase II core promoter-the gateway to transcription. Current Opinion in Cell Biology, 20, 253-259.

Khan T A, Saleem M, Fariduddin Q. 2023. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. Journal of Plant Growth Regulation, 42, 2408-2432.

Kołodziejczyk I, Kaźmierczak A, Posmyk M M. 2021. Melatonin application modifies antioxidant defense and induces endoreplication in maize seeds exposed to chilling stress. International Journal of Molecular Sciences, 22, 8628.

Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593-1608.

Kumar N, Shankhdhar S C, Shankhdhar D. 2016. Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian Journal of Plant Physiology, 21, 37-43.

Kumar P, Sharma P K. 2020. Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781.

Latef A A H A, Alhmad M F A, Kordrostami M, Abo–Baker A B, Zakir A. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. Journal of Plant Growth Regulation, 39, 1293-1306.

Latef A A H A, Mostofa M G, Rahman M M, Abdel-Farid I B, Tran L S P. 2019. Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. Journal of Plant Growth Regulation, 38, 966-979.

Li M Q, Hasan M K, Li C X, Ahammed G J, Xia X J, Shi K, Zhou Y H, Reiter R J, Yu J Q, Xu M X. 2016. Melatonin mediates selenium‐induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 61, 291-302.

Li X, Brestic M, Tan D X, Zivcak M, Zhu X, Liu S, Song F, Reiter R J, Liu F. 2018a. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 64, e12453.

Li X, Wei J P, Scott E R, Liu J W, Guo S, Li Y, Zhang L, Han W Y. 2018b. Exogenous melatonin alleviates cold stress by promoting antioxidant defense and redox homeostasis in Camellia sinensis L. Molecules, 23, 165.

Liang X, Zhang L, Natarajan S K, Becker D F. 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998-1011.

Liao Y, Chien S C, Wang M, Shen Y, Hung P, Das B. 2006. Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere, 65, 343-351.

Lu P, Magwanga R O, Guo X, Kirungu J N, Lu H, Cai X, Zhou Z, Wei Y, Wang X, Zhang Z. 2018. Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. G3: Genes, Genomes, Genetics, 8, 2483-2500.

Luo H, Tang F. 2023. Mepiquat chloride application combined with high plant population density promotes carbon remobilization in the roots of upland cotton. Plant Physiology and Biochemistry, 194, 70-84.

Magwanga R O, Lu P, Kirungu J N, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K. 2018. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics, 19, 1-31.

El Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández J L, Bundó M, Mendoza I, Mieulet D. 2019. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology, 180, 1046-1065.

Maiti R, Satya P. 2014. Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops & Food, 5, 259-279.

Maroco J P, Pereira J S, Chaves M M. 2000. Growth, photosynthesis and water-use efficiency of two C4Sahelian grasses subjected to water deficits. Journal of Arid Environments, 45, 119-137.

Meena K K, Sorty A M, Bitla U M, Choudhary K, Gupta P, Pareek A, Singh D P, Prabha R, Sahu P K, Gupta V K. 2017. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science, 8, 172.

Meers E, Qadir M, De Caritat P, Tack F, Du Laing G, Zia M. 2009. EDTA-assisted Pb phytoextraction. Chemosphere, 74, 1279-1291.

Meng L, Yu K, Wei Z, Li K, Dai J, Li F, Qi H, Sun L, Zhang L, Dong H. 2023. High dosage of mepiquat chloride delays defoliation of harvest aids in cotton. Industrial Crops and Products, 202, 116998.

Miquel M, James Jr D, Dooner H, Browse J. 1993. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proceedings of the National Academy of Sciences of the United States of America, 90, 6208-6212.

Moore C E, Meacham-Hensold K, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson T, Cavanagh A P. 2021. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 72, 2822-2844.

Morales M, Sánchez-Blanco M, Olmos E, Torrecillas A, Alarcon J. 1998. Changes in the growth, leaf water relations and cell ultrastructure in Argyranthemum coronopifolium plants under saline conditions. Journal of Plant Physiology, 153, 174-180.

Mukamuhirwa A, Persson Hovmalm H, Bolinsson H, Ortiz R, Nyamangyoku O, Johansson E. 2019. Concurrent drought and temperature stress in rice-A possible result of the predicted climate change: Effects on yield attributes, eating characteristics, and health promoting compounds. International Journal of Environmental Research and Public Health, 16, 1043.

Naya L, Ladrera R, Ramos J, González E M, Arrese-Igor C, Minchin F R, Becana M. 2007. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiology, 144, 1104-1114.

Negrão S, Schmöckel S, Tester M. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1-11.

Nishida I, Murata N. 1996. Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annual Review of Plant Biology, 47, 541-568.

Nithya N, Beena R, Abida P, Sreekumar J, Stephen R, Jayalekshmi V, Manju R, Viji M. 2021. Genetic diversity and population structure analysis of bold type rice collection from Southern India. Cereal Research Communications, 49, 311-328.

Onaga G, Wydra K. 2016. Advances in plant tolerance to abiotic stresses. Plant Genomics, 10, 229-272.

Panda D, Sarkar R K. 2014. Mechanism associated with nonstructural carbohydrate accumulation in submergence tolerant rice (Oryza sativa L.) cultivars. Journal of Plant Interactions, 9, 62-68.

Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324-349.

Pearce R S. 2001. Plant freezing and damage. Annals of Botany, 87, 417-424.

Piveta L B, Roma-Burgos N, Noldin J A, Viana V E, Oliveira C d, Lamego F P, Avila L A D. 2020. Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture, 11, 9.

Posmyk M M. 2016. Exogenous melatonin improves antioxidant defence in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science7, 575.

Pourrut B, Jean S, Silvestre J, Pinelli E. 2011. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 726, 123-128.

Prince S J, Beena R, Gomez S M, Senthivel S, Babu R C. 2015. Mapping consistent rice (Oryza sativa L.) yield QTLs under drought stress in target rainfed environments. Rice, 8, 1-13.

Qari S H, Hassan M U, Chattha M U, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal M A, Aljabri M. 2022. Melatonin induced cold tolerance in plants: Physiological and molecular responses. Frontiers in Plant Science, 13, 843071.

Radha B, Sunitha N C, Sah R P, Muhammed Azharudheen T P, Krishna G, Umesh D K, Thomas S, Anilkumar C, Upadhyay S, Kumar A. 2023. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Frontiers in Plant Science, 13, 996514.

Rang Z, Jagadish S, Zhou Q, Craufurd P, Heuer S. 2011. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70, 58-65.

Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169-181.

Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, Anwar S, Sharifi S, Lu G, Siddique K H. 2023. Role of phytohormones in regulating cold stress tolerance: Physiological and molecular approaches for developing cold-smart crop plants. Plant Stress, 8, 100152.

Ben Rejeb I, Pastor V, Mauch-Mani B. 2014. Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3, 458-475.

Rejeth R, Manikanta C L, Beena R, Stephen R, Manju R, Viji M. 2020. Water stress mediated root trait dynamics and identification of microsatellite markers associated with root traits in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 26, 1225-1236.

Reshma M, Beena R, Viji M, Manju R, Roy S. 2021. Validation of temperature induction response technique on combined effect of drought and heat stress in rice (Oryza sativa L.). Journal of Crop and Weed, 17, 119-128.

De Las Rivas J, Barber J. 1997. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry, 36, 8897-8903.

De Ronde J, Cress W, Krüger G, Strasser R, Van Staden J. 2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology, 161, 1211-1224.

Samarah N H. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25, 145-149.

Dos Santos T P, Lopes C M, Rodrigues M L, de Souza C R, Ricardo-da-Silva J M, Maroco J P, Pereira J S, Chaves M M. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112, 321-330.

Schutzendubel A, Polle A. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351-1365.

Seo D H, Seomun S, Choi Y D, Jang G. 2020. Root development and stress tolerance in rice: The key to improving stress tolerance without yield penalties. International Journal of Molecular Sciences, 21, 1807.

Shaheen T, Riaz M S, Zafar Y. 2016. Soybean production and drought stress. In: Abiotic and Biotic Stresses in Soybean Production, Elsevier, London. pp. 177-196.

Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, De Groot S, Soole K, Langridge P. 2017. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1950.

Shelden M C, Roessner U, Sharp R E, Tester M, Bacic A. 2013. Genetic variation in the root growth response of barley genotypes to salinity stress. Functional Plant Biology, 40, 516-530.

Sherin G, Aswathi K R, Puthur J T. 2022. Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress, 4, 100079.

Shi H, Ishitani M, Kim C, Zhu J K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896-6901.

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221-227.

Singh V, Singh A K, Raghuvanshi T, Singh M K, Singh V, Singh U. 2017. Influence of boron and molybdenum on growth, yield and quality of cauliflower (Brassica oleracea L. var. botrytis). International Journal of Current Microbiology and Applied Sciences, 6, 3408-3414.

Sinha R, Zandalinas S I, Fichman Y, Sen S, Zeng S, Gómez-Cadenas A, Joshi T, Fritschi F B, Mittler R. 2022. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytologist, 235, 611-629.

Smertenko A, Dráber P, Viklický V, Opatrný Z. 1997. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant, Cell & Environment, 20, 1534-1542.

Song S, Li X, Tian Y, Zhou X, Qu Z, Liu J, Dong S. 2023. Physiology and proteomics analyses reveal the regulatory mechanism of mepiquat chloride in soybean. Frontiers in Sustainable Food Systems, 7, 1188159.

Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M. 2013. Plant plasma membrane proteomics for improving cold tolerance. Frontiers in Plant Science, 4, 90.

Taleisnik E, Rodríguez A A, Bustos D, Erdei L, Ortega L, Senn M E. 2009. Leaf expansion in grasses under salt stress. Journal of Plant Physiology, 166, 1123-1140.

Tangpremsri T, Fukai S, Fischer K. 1995. Growth and yield of sorghum lines extracted from a population for differences in osmotic adjustment. Australian Journal of Agricultural Research, 46, 61-74.

Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503-527.

Tiryaki İ. 2016. Drought stress and tolerance mechanisms in alfalfa (Medicago sativa L.). 19, 296-304.

Turner N C, Wright G C, Siddique K. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193-231.

Tuteja N, Gill S S. 2016. Abiotic Stress Response in Plants. John Wiley & Sons, Italy.

Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C. 2009. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157, 1178-1185.

Verbruggen N, Hermans C, Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181, 759-776.

Verma J K, Wardhan V, Singh D, Chakraborty S, Chakraborty N. 2018. Genome-wide identification of the Alba gene family in plants and stress-responsive expression of the rice Alba genes. Genes, 9, 183.

Vierling E. 1991. The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42, 579-620.

Vu J C, Gesch R W, Pennanen A H, Hartwell Jr L A, Boote K J, Bowes G. 2001. Soybean photosynthesis, Rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2. Journal of plant Physiology, 158, 295-307.

Wahid A, Shabbir A. 2005. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46, 133-141.

Walter J. 2018. Effects of changes in soil moisture and precipitation patterns on plant-mediated biotic interactions in terrestrial ecosystems. Plant Ecology, 219, 1449-1462.

Wang D Z, Jin Y N, Ding X H, Wang W J, Zhai S S, Bai L P, Guo Z F. 2017. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry (Moscow), 82, 1103-1117.

Wang L, Yin Y, Wang L F, Wang M, Zhao M, Tian Y, Li Y F. 2020. Transcriptome profiling of the elongating internode of cotton (Gossypium hirsutum L.) seedlings in response to mepiquat chloride. Frontiers in Plant Science, 10, 1751.

Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F. 2013. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. Journal of Pineal Research, 55, 424-434.

Wani S H. 2018. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. Academic Press, Cambridge, USA.

Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66, 695-707.

Wilson J, Ludlow M, Fisher M, Schulze E. 1980. Adaptation to water stress of the leaf water relations of four tropical forage species. Functional Plant Biology, 7, 207-220.

Wu Y, Liu J, Wu H, Zhu Y, Ahmad I, Zhou G. 2023. The roles of mepiquate chloride and melatonin in the morpho-physiological activity of cotton under abiotic stress. International Journal of Molecular Sciences, 25, 235.

Xiong D, Yu T, Ling X, Fahad S, Peng S, Li Y, Huang J. 2014. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology, 42, 347-356.

Xiong L, Schumaker K S, Zhu J K. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell, 14, S165-S183.

Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M. 2020. Effect of abiotic stress on crops. Sustainable Crop Production, 3, 5-16.

Yadav S, Sharma K D. 2016. Molecular and morphophysiological analysis of drought stress in plants. Plant Growth, 10, 65246.

Yadav S, Vijapura A, Dave A, Shah S, Memon Z. 2019. Genetic diversity analysis of different wheat [Triticum aestivum (L.)] varieties using SSR markers. International Journal of Current Microbiology and Applied Sciences, 8, 839-846.

Yang X, Wang B, Chen L, Li P, Cao C. 2019. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9, 3742.

Zaman E, Karim M A, Bari M N, Akter N, Ahmed J U. 2016. Growth and yield performance of selected wheat varieties under water deficit conditions. Bangladesh Journal of Scientific Research, 29, 163-172.

Zhang H, Liu L, Wang Z, Feng G, Gao Q, Li X. 2021. Induction of low temperature tolerance in wheat by pre-soaking and parental treatment with melatonin. Molecules, 26, 1192.

Zheng Y, Wang Z, Sun X, Jia A, Jiang G, Li Z. 2008. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environmental and Experimental Botany, 62, 129-138. 

No related articles found!
No Suggested Reading articles found!